Code It, See It, Touch It: Vision-Powered AR Programming Tool for Children

Guardado en:
Bibliografiske detaljer
Udgivet i:ProQuest Dissertations and Theses (2025)
Hovedforfatter: Zhou, Shuyao
Udgivet:
ProQuest Dissertations & Theses
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3217069512
003 UK-CbPIL
020 |a 9798280750104 
035 |a 3217069512 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Zhou, Shuyao 
245 1 |a Code It, See It, Touch It: Vision-Powered AR Programming Tool for Children 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Children increasingly interact with intelligent systems through Augmented Reality (AR), but few authoring tools enable them to create expressive experiences grounded in the physical world. We present an AR authoring tool that enables children to create interactive experiences by linking visual code blocks to physical objects recognized by vision-based AI models. The system is built on a block-based programming interface and leverages YOLOv11 to identify physical objects through the device camera. Building on the accessibility of block-based programming, our system encourages creativity and exploration by extending traditional visual authoring tools into the physical environment. Through user studies with 20 children aged 7–16 in the United States and Argentina, we found that children could successfully author interactive AR stories using object detection, creatively extending their environments into hybrid digital-physical play. We discuss the system design, implementation, and implications for educational AI tools that blend embodied programming with computer vision. Our findings suggest that the system supports playful, explorative learning, while also highlighting challenges in real-time object tracking accuracy and responsiveness. 
653 |a Computer science 
653 |a Education 
653 |a Computer engineering 
653 |a Artificial intelligence 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217069512/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217069512/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch