Statistical Modeling of Daily Average Levels of Carbon Monoxide (CO), Sulfur Dioxide (SO2), and Nitric Oxide (NO) in Visakhapatnam Using the Burr-XII Distribution

Guardado en:
Detalles Bibliográficos
Publicado en:IAENG International Journal of Applied Mathematics vol. 55, no. 4 (Apr 2025), p. 742
Autor principal: Saripalli, Arun Kumar
Otros Autores: Akiri, Sridhar, Rekha, Sarode
Publicado:
International Association of Engineers
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3217244704
003 UK-CbPIL
022 |a 1992-9978 
022 |a 1992-9986 
035 |a 3217244704 
045 2 |b d20250401  |b d20250430 
100 1 |a Saripalli, Arun Kumar  |u Research Scholar in the Department of Mathematics, GSS, GITAM (Deemed to be) University, India 
245 1 |a Statistical Modeling of Daily Average Levels of Carbon Monoxide (CO), Sulfur Dioxide (SO2), and Nitric Oxide (NO) in Visakhapatnam Using the Burr-XII Distribution 
260 |b International Association of Engineers  |c Apr 2025 
513 |a Journal Article 
520 3 |a Urban air pollution is a critical global challenge, especially in rapidly industrializing cities, where effective environmental management requires robust probabilistic models. This study evaluates the three parameter Burr-XII distribution for modeling daily average concentrations of carbon monoxide (CO), sulfur dioxide (SO2), and nitric oxide (NO) in Visakhapatnam, India, using data from January 1st, 2018 to December 31st, 2022. Various statistical tools-such as skewness-kurtosis plots, probability density functions (PDFs), empirical cumulative distribution functions (ECDFs), P-P, and Q-Q plots are employed to assess the model's validity. Maximum Likelihood Estimation (MLE), goodness-of-fit tests (Kolmogorov-Smirnov, Anderson-Darling, and Cramér-von Mises), and model selection criteria like Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC) are applied to evaluate the performance of the Burr-XII distribution compared to the Dagum-I and Log-Logistic distributions. Results show that the Burr-XII distribution consistently provides the best fit, demonstrating superior error metrics-mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and the coefficient of determination (R2), excelling in goodness-of-fit and model selection criteria, while showing lower standard errors and better alignment with empirical data, particularly in the tails and extreme values. These findings highlight the robustness of the Burr-XII distribution in capturing the variability and skewness inherent in air pollutant concentrations. The study underscores the potential of the Burr-XII distribution as a reliable tool for air quality modeling, enhancing pollution forecasting and regulatory compliance. By supporting effective environmental monitoring and policy-making, the findings contribute to improved public health protection in urban centers. 
651 4 |a Italy 
651 4 |a India 
653 |a Mean square errors 
653 |a Kurtosis 
653 |a Pollutants 
653 |a Nitric oxide 
653 |a Skewness 
653 |a Performance evaluation 
653 |a Random variables 
653 |a Trends 
653 |a Emissions 
653 |a Environmental monitoring 
653 |a Public health 
653 |a Statistical tests 
653 |a Goodness of fit 
653 |a Carbon monoxide 
653 |a Sulfur dioxide 
653 |a Sulfur 
653 |a Air pollution 
653 |a Probability density functions 
653 |a Outdoor air quality 
653 |a Pollution control 
653 |a Statistical analysis 
653 |a Extreme values 
653 |a Environmental management 
653 |a Probabilistic models 
653 |a Root-mean-square errors 
653 |a Distribution functions 
653 |a Criteria 
653 |a Maximum likelihood estimation 
653 |a Air quality 
653 |a Statistical models 
653 |a Cities 
653 |a Statistical methods 
700 1 |a Akiri, Sridhar  |u Assistant Professor in the Department of Mathematics, GSS, GITAM (Deemed to be) University, India 
700 1 |a Rekha, Sarode  |u Assistant Professor in the Department of Mathematics at Madanapalle Institute of Technology & Science, Madanapalle, India 
773 0 |t IAENG International Journal of Applied Mathematics  |g vol. 55, no. 4 (Apr 2025), p. 742 
786 0 |d ProQuest  |t Computer Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217244704/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3217244704/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217244704/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch