Scalable cyber‐physical testbed for cybersecurity evaluation of synchrophasors in power systems

Guardado en:
Detalles Bibliográficos
Publicado en:IET Cyber-Physical Systems : Theory & Applications vol. 10, no. 1 (Jan/Dec 2025)
Autor principal: Das, Shuvangkar Chandra
Otros Autores: Vu, Tuyen, Ginn, Herbert
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3217514601
003 UK-CbPIL
022 |a 2398-3396 
024 7 |a 10.1049/cps2.12106  |2 doi 
035 |a 3217514601 
045 2 |b d20250101  |b d20251231 
100 1 |a Das, Shuvangkar Chandra  |u ECE, Clarkson University, Potsdam, New York, USA 
245 1 |a Scalable cyber‐physical testbed for cybersecurity evaluation of synchrophasors in power systems 
260 |b John Wiley & Sons, Inc.  |c Jan/Dec 2025 
513 |a Journal Article 
520 3 |a This paper presents a synchrophasor‐based real‐time cyber‐physical power system testbed with a novel security evaluation tool, pySynphasor, that can emulate different real attack scenarios on the phasor measurement unit (PMU). The testbed focuses on real‐time cyber‐security emulation using different components, including a real‐time digital simulator, virtual machines (VM), a communication network emulator, and a packet manipulation tool. The script‐based VM deployment and software‐defined network emulation facilitate a highly scalable cyber‐physical testbed, which enables emulations of a real power system under different attack scenarios such as address resolution protocol (ARP) poisoning attack, man‐in‐the‐middle (MITM) attack, false data injection attack (FDIA), and eavesdropping attack. An open‐source pySynphasor module has been implemented to analyse the security vulnerabilities of the IEEE C37.118.2 protocol. The paper also presents an interactive framework for injecting false data into a realistic system utilising the pySynphasor module, which can dissect and reconstruct the C37.118.2 packets. Therefore, it expands the potential of testing and developing PMU‐based systems and analysing their security vulnerabilities, benefiting the power industry and academia. A case study demonstrating the FDIA attack on the PMU measurements and the bad‐data detection technique is presented as an example of the testbed capability. 
610 4 |a Colonial Pipeline Co 
651 4 |a United States--US 
653 |a Machine learning 
653 |a Software 
653 |a Wide area networks 
653 |a Distributed network protocols 
653 |a Virtual reality 
653 |a Intrusion detection systems 
653 |a Protocol 
653 |a Measuring instruments 
653 |a Communication 
653 |a Cybersecurity 
653 |a Communications networks 
653 |a Malware 
653 |a Test stands 
653 |a Phasors 
653 |a Modules 
653 |a Denial of service attacks 
653 |a Nuclear power plants 
653 |a Virtual environments 
700 1 |a Vu, Tuyen  |u ECE, Clarkson University, Potsdam, New York, USA 
700 1 |a Ginn, Herbert  |u Electrical Engineering College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA 
773 0 |t IET Cyber-Physical Systems : Theory & Applications  |g vol. 10, no. 1 (Jan/Dec 2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217514601/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3217514601/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217514601/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch