Prediction of electrical load demand using combined LHS with ANFIS

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 6 (Jun 2025), p. e0325747
Autor principal: Ismail, Ahmed G
Otros Autores: Elbanna, Sayed H A, Mohamed, Hassan S
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3217665448
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0325747  |2 doi 
035 |a 3217665448 
045 2 |b d20250601  |b d20250630 
084 |a 174835  |2 nlm 
100 1 |a Ismail, Ahmed G 
245 1 |a Prediction of electrical load demand using combined LHS with ANFIS 
260 |b Public Library of Science  |c Jun 2025 
513 |a Journal Article 
520 3 |a Enhancement prediction of load demand is crucial for effective energy management and resource allocation in modern power systems and especially in medical segment. Proposed method leverages strengths of ANFIS in learning complex nonlinear relationships inherent in load demand data. To evaluate the effectiveness of the proposed approach, researchers conducted hybrid methodology combine LHS with ANFIS, using actual load demand readings. Comparative analysis investigates performing various machine learning models, including Adaptive Neuro-Fuzzy Inference Systems (ANFIS) alone, and ANFIS combined with Latin Hypercube sampling (LHS), in predicting electrical load demand. The paper explores enhancing ANFIS through LHS compared with Monte Carlo (MC) method to improve predictive accuracy. It involves simulating energy demand patterns over 1000 iterations, using performance metrics through Mean Squared Error (MSE). The study shows superior predictive performance of ANFIS-LHS model, achieving higher accuracy and robustness in load demand prediction across different time horizons and scenarios. Thus, findings of this research contribute to advanced developments rather than previous research by introducing a combined predictive methodology that leverages LHS to ensure solving limitations of previous methods like structured, stratified sampling of input variables, reducing overfitting and enhancing adaptability to varying data sizes. Additionally, it incorporates sensitivity analysis and risk assessment, significantly improving predictive accuracy. Using Python and Simulink Matlab, Combined LHS with ANFIS showing accuracy of 96.42% improvement over the ANFIS model alone. 
653 |a Resource allocation 
653 |a Energy management 
653 |a Accuracy 
653 |a Comparative analysis 
653 |a Electrical loads 
653 |a Datasets 
653 |a Adaptability 
653 |a Forecasting 
653 |a Sensitivity analysis 
653 |a Demand analysis 
653 |a Hypercubes 
653 |a Health facilities 
653 |a Sampling 
653 |a Risk assessment 
653 |a Machine learning 
653 |a Time series 
653 |a Energy demand 
653 |a Energy consumption 
653 |a Efficiency 
653 |a Adaptive systems 
653 |a Performance measurement 
653 |a Infrastructure 
653 |a Predictions 
653 |a Decision making 
653 |a Neural networks 
653 |a Support vector machines 
653 |a Effectiveness 
653 |a Electric power demand 
653 |a Methods 
653 |a Literature reviews 
653 |a Monte Carlo simulation 
653 |a Latin hypercube sampling 
653 |a Economic 
700 1 |a Elbanna, Sayed H A 
700 1 |a Mohamed, Hassan S 
773 0 |t PLoS One  |g vol. 20, no. 6 (Jun 2025), p. e0325747 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217665448/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3217665448/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217665448/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch