A plaque recognition algorithm for coronary OCT images by Dense Atrous Convolution and attention mechanism

Guardado en:
Bibliografiske detaljer
Udgivet i:PLoS One vol. 20, no. 6 (Jun 2025), p. e0325911
Hovedforfatter: He, Meng
Andre forfattere: Zhao, Ran, Zhang, Ying, Zhang, Bo, Zhang, Cheng, Wang, Di, Sun, Jinlu
Udgivet:
Public Library of Science
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3217665564
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0325911  |2 doi 
035 |a 3217665564 
045 2 |b d20250601  |b d20250630 
084 |a 174835  |2 nlm 
100 1 |a He, Meng 
245 1 |a A plaque recognition algorithm for coronary OCT images by Dense Atrous Convolution and attention mechanism 
260 |b Public Library of Science  |c Jun 2025 
513 |a Journal Article 
520 3 |a Currently, plaque segmentation in Optical Coherence Tomography (OCT) images of coronary arteries is primarily carried out manually by physicians, and the accuracy of existing automatic segmentation techniques needs further improvement. To furnish efficient and precise decision support, automated detection of plaques in coronary OCT images holds paramount importance. For addressing these challenges, we propose a novel deep learning algorithm featuring Dense Atrous Convolution (DAC) and attention mechanism to realize high-precision segmentation and classification of Coronary artery plaques. Then, a relatively well-established dataset covering 760 original images, expanded to 8,000 using data enhancement. This dataset serves as a significant resource for future research endeavors. The experimental results demonstrate that the dice coefficients of calcified, fibrous, and lipid plaques are 0.913, 0.900, and 0.879, respectively, surpassing those generated by five other conventional medical image segmentation networks. These outcomes strongly attest to the effectiveness and superiority of our proposed algorithm in the task of automatic coronary artery plaque segmentation. 
653 |a Tomography 
653 |a Calcification 
653 |a Accuracy 
653 |a Datasets 
653 |a Deep learning 
653 |a Algorithms 
653 |a Convolution 
653 |a Medical imaging 
653 |a Image processing 
653 |a Plaques 
653 |a Automation 
653 |a Lipids 
653 |a Machine learning 
653 |a Coronary artery 
653 |a Image segmentation 
653 |a Neural networks 
653 |a Classification 
653 |a Optical Coherence Tomography 
653 |a Environmental 
700 1 |a Zhao, Ran 
700 1 |a Zhang, Ying 
700 1 |a Zhang, Bo 
700 1 |a Zhang, Cheng 
700 1 |a Wang, Di 
700 1 |a Sun, Jinlu 
773 0 |t PLoS One  |g vol. 20, no. 6 (Jun 2025), p. e0325911 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217665564/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3217665564/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217665564/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch