Innovative data techniques for centrifugal pump optimization with machine learning and AI model

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:PLoS One vol. 20, no. 6 (Jun 2025), p. e0325952
Үндсэн зохиолч: Dave, Gaurav Sandeep
Бусад зохиолчид: Amar, Pradeep Pandhare, Atul Prabhakar Kulkarni, Khankal, Dhananjay Vasant
Хэвлэсэн:
Public Library of Science
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3217665605
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0325952  |2 doi 
035 |a 3217665605 
045 2 |b d20250601  |b d20250630 
084 |a 174835  |2 nlm 
100 1 |a Dave, Gaurav Sandeep 
245 1 |a Innovative data techniques for centrifugal pump optimization with machine learning and AI model 
260 |b Public Library of Science  |c Jun 2025 
513 |a Journal Article 
520 3 |a In modern centrifugal pump machines (CPM), a data acquisition system encompassing software- hardware interfacing is essential for parameter recording. The quality of recorded data plays a crucial role and directly influences the data transformation phase in machine learning (ML) and deep learning (DL) models. The Dewesoft FFT DAQ system is designed to extract the high-quality data from the CPM based on sensor fusion technology. The data recorded from DAQ system undergoes thorough in-depth analysis, processing & transformation before being incorporated into machine learning (ML) or artificial intelligence models. This paper emphasizes the importance of data cleaning, pre-processing, and applying appropriate methodologies to transform raw data into a valuable resource that can be utilized by ML and AI models. Key techniques include Exploratory Data Analysis (EDA), Data Visualization, and Feature Engineering (FE), which collectively enhance data interpretability. Following these transformations, hypothesis testing validates the data’s integrity, ensuring reliability for subsequent modeling. The validated data is employed to train machine learning classifiers and deep learning algorithms, targeting a 27.25% enhancement in operational efficiency based on F1 score. Additionally, it decreases model training time by 180 seconds, facilitating predictive maintenance of critical performance metrics and minimizing downtime. The assessment of model performance relies on Precision, Recall, and F1 score. This approach leverages recent advancements in data science to derive actionable insights from CPM data, facilitating more informed decision-making and optimization of pump operations. 
653 |a Data acquisition 
653 |a Scientific visualization 
653 |a Data analysis 
653 |a Artificial intelligence 
653 |a Datasets 
653 |a Signal processing 
653 |a Machine learning 
653 |a Automation 
653 |a Deep learning 
653 |a Learning algorithms 
653 |a Data processing 
653 |a Performance measurement 
653 |a Data science 
653 |a Sensors 
653 |a Optimization 
653 |a Algorithms 
653 |a Downtime 
653 |a Decision making 
653 |a Predictive maintenance 
653 |a Data visualization 
653 |a Economic 
700 1 |a Amar, Pradeep Pandhare 
700 1 |a Atul Prabhakar Kulkarni 
700 1 |a Khankal, Dhananjay Vasant 
773 0 |t PLoS One  |g vol. 20, no. 6 (Jun 2025), p. e0325952 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217665605/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3217665605/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217665605/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch