Decentralized Microenvironment-Based Particle Swarm Optimization Algorithm for Insect-Intelligent Building Platform

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Buildings vol. 15, no. 11 (2025), p. 1778
Үндсэн зохиолч: Zhang, Zhenya
Бусад зохиолчид: Xu, Shaojie, Wang, Ping, Cheng, Hongmei, Zhang, Shuguang
Хэвлэсэн:
MDPI AG
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3217719990
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15111778  |2 doi 
035 |a 3217719990 
045 2 |b d20250101  |b d20251231 
084 |a 231437  |2 nlm 
100 1 |a Zhang, Zhenya  |u Anhui Province Key Laboratory of Intelligent Building & Building Energy Saving, Anhui Jianzhu University, Hefei 230022, China; zzychm@ustc.edu.cn 
245 1 |a Decentralized Microenvironment-Based Particle Swarm Optimization Algorithm for Insect-Intelligent Building Platform 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Information processing and control tasks in each unit within a building are typically completed internally, and information processing within a building naturally exhibits distributed characteristics. The insect-intelligent building platform is an intelligent building platform, and the concept of an insect-intelligent building platform adapts to the distributed processing requirements of building information, achieving features such as self-organization and self-adaptation of the intelligent building platform. The microenvironment network serves as a fundamental network that supports the implementation of an insect-intelligent building platform. Update mechanisms for the velocity and position of particles for PSO in the microenvironment are given. This paper also proposes a Microenvironment-based Particle Swarm Optimization (MPSO) algorithm with those update mechanisms to quickly solve optimization problems using PSO under a microenvironment network. Experimental results show that, within microenvironment networks, both synchronous and asynchronous implementations of MPSO algorithms can solve optimization problems faster than the PSO algorithm while maintaining a precision similar to that of the PSO algorithm. 
653 |a Particle swarm optimization 
653 |a Control tasks 
653 |a Data processing 
653 |a Collaboration 
653 |a Artificial intelligence 
653 |a Algorithms 
653 |a Building automation 
653 |a Smart buildings 
653 |a Information processing 
653 |a Microenvironments 
653 |a Insects 
653 |a Optimization algorithms 
653 |a Distributed processing 
700 1 |a Xu, Shaojie  |u School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230022, China; 202333105164@stu.ahjzu.edu.cn (S.X.); wangping@ahjzu.edu.cn (P.W.) 
700 1 |a Wang, Ping  |u School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230022, China; 202333105164@stu.ahjzu.edu.cn (S.X.); wangping@ahjzu.edu.cn (P.W.) 
700 1 |a Cheng, Hongmei  |u School of Economics and Management, Anhui Jianzhu University, Hefei 230022, China 
700 1 |a Zhang, Shuguang  |u Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei 230026, China; sgzhang@ustc.edu.cn 
773 0 |t Buildings  |g vol. 15, no. 11 (2025), p. 1778 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217719990/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3217719990/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217719990/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch