Deep-Learning-Based Cognitive Assistance Embedded Systems for People with Visual Impairment

Guardat en:
Dades bibliogràfiques
Publicat a:Applied Sciences vol. 15, no. 11 (2025), p. 5887
Autor principal: Ngo Huu-Huy
Altres autors: Le, Hung Linh, Feng-Cheng, Lin
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3217721178
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15115887  |2 doi 
035 |a 3217721178 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Ngo Huu-Huy  |u Faculty of Information Technology, Thai Nguyen University of Information and Communication Technology, Thai Nguyen 24000, Vietnam; nhhuy@ictu.edu.vn 
245 1 |a Deep-Learning-Based Cognitive Assistance Embedded Systems for People with Visual Impairment 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a For people with vision impairment, various daily tasks, such as independent navigation, information access, and context awareness, may be challenging. Although several smart devices have been developed to assist blind people, most of these devices focus exclusively on navigation assistance and obstacle avoidance. In this study, we developed a portable system for not only obstacle avoidance but also identifying people and their emotions. The core of the developed system is a powerful and portable edge computing device that implements various deep learning algorithms for images captured from a webcam. The user can easily select a function by using a remote control device, and the system vocally reports the results to the user. The developed system has three primary functions: detecting the names and emotions of known people; detecting the age, gender, and emotion of unknown people; and detecting objects. To validate the performance of the developed system, a prototype was constructed and tested. The results reveal that the developed system has high accuracy and responsiveness and is therefore suitable for practical applications as a navigation and social assistive device for people with visual impairment. 
653 |a Visual impairment 
653 |a Embedded systems 
653 |a Deep learning 
653 |a Smartphones 
653 |a Social interaction 
653 |a Internet access 
653 |a Age 
653 |a Computer vision 
653 |a Gender 
653 |a Sensors 
653 |a Classification 
653 |a Blindness 
653 |a Algorithms 
653 |a Facial recognition technology 
653 |a Surveillance 
653 |a Emotions 
653 |a Internet of Things 
700 1 |a Le, Hung Linh  |u Faculty of Engineering and Technology, Thai Nguyen University of Information and Communication Technology, Thai Nguyen 24000, Vietnam; lhlinh@ictu.edu.vn 
700 1 |a Feng-Cheng, Lin  |u Department of Information Engineering and Computer Science, Feng Chia University, Taichung 40724, Taiwan 
773 0 |t Applied Sciences  |g vol. 15, no. 11 (2025), p. 5887 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217721178/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3217721178/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217721178/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch