Thermal Load Predictions in Low-Energy Buildings: A Hybrid AI-Based Approach Integrating Integral Feature Selection and Machine Learning Models

Guardado en:
Bibliografiske detaljer
Udgivet i:Applied Sciences vol. 15, no. 11 (2025), p. 6348
Hovedforfatter: Youness, El Mghouchi
Andre forfattere: Udristioiu Mihaela Tinca
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3217724308
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15116348  |2 doi 
035 |a 3217724308 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Youness, El Mghouchi  |u Department of Energetics, École Nationale Supérieure d’Arts et Métiers, Moulay Ismail University, Meknes 50050, Morocco; y.elmghouchi@umi.ac.ma 
245 1 |a Thermal Load Predictions in Low-Energy Buildings: A Hybrid AI-Based Approach Integrating Integral Feature Selection and Machine Learning Models 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a A hybrid Artificial Intelligence (AI) framework centered on metamodeling, integrating simulation data with hybrid data-driven techniques, was implemented to enhance the predictive accuracy and optimization of thermal load projections in three distinct climates in Morocco. Initially, 13 machine learning (ML) models were assessed to predict heating and cooling loads. The best-performing models from this stage were then selected for the subsequent phase to find out the optimal combinations of inputs to predict thermal loads. In this phase, an Integral Feature Selection (IFS) method was employed in conjunction with the best ML models. An extensive evaluation using advanced statistical measures was performed during the evaluation stage. The results reveal that, for each climate, numerous high-accuracy prediction pathways were identified for thermal load prediction, surpassing the confidence level of 99% for R2. The results found here outperformed those reported by other researchers in thermal load predictions for Low-Energy Buildings (LEBs). 
651 4 |a Morocco 
653 |a Machine learning 
653 |a Software 
653 |a Accuracy 
653 |a Green buildings 
653 |a Datasets 
653 |a Cooling 
653 |a Artificial intelligence 
653 |a Generalized linear models 
653 |a Optimization 
653 |a Neural networks 
653 |a Computer simulation 
653 |a Feature selection 
653 |a Architecture 
653 |a Energy efficiency 
653 |a Heat 
653 |a HVAC 
653 |a Algorithms 
653 |a Emission standards 
653 |a Energy consumption 
653 |a Climate 
653 |a Case studies 
700 1 |a Udristioiu Mihaela Tinca  |u Department of Physics, Faculty of Sciences, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania 
773 0 |t Applied Sciences  |g vol. 15, no. 11 (2025), p. 6348 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217724308/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3217724308/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217724308/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch