Research on a Prediction Model Based on a Newton–Raphson-Optimization–XGBoost Algorithm Predicting Environmental Electromagnetic Effects for an Airborne Synthetic Aperture Radar

Guardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 11 (2025), p. 2202
Autor principal: Shen, Yan
Otros Autores: Chen, Yazhou, Wang, Yuming, Ma, Liyun, Zhang, Xiaolu
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3217725515
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14112202  |2 doi 
035 |a 3217725515 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Shen, Yan 
245 1 |a Research on a Prediction Model Based on a Newton–Raphson-Optimization–XGBoost Algorithm Predicting Environmental Electromagnetic Effects for an Airborne Synthetic Aperture Radar 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Airborne synthetic aperture radar (SAR) serves as critical battlefield reconnaissance equipment, yet it remains vulnerable to electromagnetic interference (EMI) in combat environments, leading to image-quality degradation. To address this challenge, this study proposes an EMI-effect prediction framework for airborne SAR electromagnetic environments, based on the Newton–Raphson-based optimization (NRBO) and XGBoost algorithms. The methodology enables interference-level prediction through electromagnetic signal parameters obtained from reconnaissance operations, providing operational foundations with which SAR systems can mitigate the impacts of EMI. A laboratory-based airborne SAR EMI test system was developed to establish mapping relationships between EMI signal parameters and SAR imaging performance degradation. This experimental platform facilitated EMI-effect investigations across diverse interference scenarios. An evaluation methodology for SAR image degradation caused by EMI was formulated, revealing the characteristic influence patterns of different interference signals in the context of SAR imagery. The NRBO–XGBoost framework was established through algorithmic integration of Newton–Raphson search principles with trap avoidance mechanisms from the Newton–Raphson optimization algorithm, optimizing the XGBoost hyperparameters. Utilizing the developed test system, comprehensive EMI datasets were constructed under varied interference conditions. Comparative experiments demonstrated the NRBO–XGBoost model’s superior accuracy and generalization performance relative to conventional prediction approaches. 
653 |a Standard deviation 
653 |a Test systems 
653 |a Signal to noise ratio 
653 |a Prediction models 
653 |a Synthetic aperture radar 
653 |a Optimization 
653 |a Signal processing 
653 |a Electromagnetic interference 
653 |a Antennas 
653 |a Newton-Raphson method 
653 |a Image degradation 
653 |a Algorithms 
653 |a Performance degradation 
653 |a Image quality 
653 |a Parameters 
653 |a Airborne radar 
653 |a Distance learning 
653 |a Reconnaissance 
653 |a Information warfare 
700 1 |a Chen, Yazhou 
700 1 |a Wang, Yuming 
700 1 |a Ma, Liyun 
700 1 |a Zhang, Xiaolu 
773 0 |t Electronics  |g vol. 14, no. 11 (2025), p. 2202 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217725515/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3217725515/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217725515/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch