Application of Portable Near-Infrared Spectroscopy for Quantitative Prediction of Protein Content in Torreya grandis Kernels Under Different States

保存先:
書誌詳細
出版年:Foods vol. 14, no. 11 (2025), p. 1847
第一著者: Gu Yuqi
その他の著者: Zhong Haosheng, Wu, Jianhua, Li Kaixuan, Huang, Yu, Fang Huimin, Hassan, Muhammad, Yao Lijian, Zhao, Chao
出版事項:
MDPI AG
主題:
オンライン・アクセス:Citation/Abstract
Full Text + Graphics
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3217732199
003 UK-CbPIL
022 |a 2304-8158 
024 7 |a 10.3390/foods14111847  |2 doi 
035 |a 3217732199 
045 2 |b d20250101  |b d20251231 
084 |a 231462  |2 nlm 
100 1 |a Gu Yuqi  |u College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China; guyuqi@zafu.edu.cn (Y.G.); 2023612021010@stu.zafu.edu.cn (K.L.); 15968131641@163.com (Y.H.); 20080094@zafu.edu.cn (L.Y.) 
245 1 |a Application of Portable Near-Infrared Spectroscopy for Quantitative Prediction of Protein Content in <i>Torreya grandis</i> Kernels Under Different States 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Protein content is a key quality indicator in nuts, influencing their color, taste, storage, and processing properties. Traditional methods for protein quantification, such as the Kjeldahl nitrogen method, are time-consuming and destructive, highlighting the need for rapid, convenient alternatives. This study explores the feasibility of using portable near-infrared spectroscopy (NIRS) for the quantitative prediction of protein content in Torreya grandis (T. grandis) kernels by comparing different sample states (with shell, without shell, and granules). Spectral data were acquired using a portable NIR spectrometer, and the protein content was determined via the Kjeldahl nitrogen method as a reference. Outlier detection was performed using principal component analysis combined with Mahalanobis distance (PCA-MD) and concentration residual analysis. Various spectral preprocessing techniques and partial least squares regression (PLSR) were applied to develop protein prediction models. The results demonstrated that portable NIRS could effectively predict protein content in T. grandis kernels, with the best performance being achieved using granulated samples. The optimized model (1Der-SNV-PLSR-G) significantly outperformed models based on whole kernels (with or without shell), with determination coefficients for the calibration set (<inline-formula>Rc2</inline-formula>) and prediction set (<inline-formula>Rp2</inline-formula>) of 0.92 and 0.86, respectively, indicating that the sample state critically influenced prediction accuracy. This study confirmed the potential of portable NIRS as a rapid and convenient tool for protein quantification in nuts, offering a practical alternative to conventional methods. The findings also suggested its broader applicability for quality assessment in other nuts and food products, contributing to advancements in food science and agricultural technology. 
651 4 |a China 
653 |a Outliers (statistics) 
653 |a Data acquisition 
653 |a Food 
653 |a Nuts 
653 |a Principal components analysis 
653 |a Nitrogen 
653 |a Agricultural technology 
653 |a Least squares method 
653 |a Feasibility studies 
653 |a Statistical analysis 
653 |a Prediction models 
653 |a Infrared spectra 
653 |a Infrared spectroscopy 
653 |a Proteins 
653 |a Nutrient content 
653 |a Data analysis 
653 |a Quality assessment 
653 |a Quality standards 
653 |a Spectrum analysis 
653 |a Near infrared radiation 
653 |a Quality control 
653 |a Food processing 
653 |a Particle size 
653 |a Kernels 
653 |a Information processing 
653 |a Portability 
653 |a Torreya grandis 
700 1 |a Zhong Haosheng  |u Zhoushan Special Equipment Inspection Research Institute, Zhoushan 316021, China; 13656800858@163.com 
700 1 |a Wu, Jianhua  |u Panzhihua Academy of Agriculture and Forestry Sciences, Panzhihua 617061, China; jhuawu2024@163.com 
700 1 |a Li Kaixuan  |u College of Optical, Mechanical and Electrical Engineering, Zhejiang A&amp;amp;F University, Hangzhou 311300, China; guyuqi@zafu.edu.cn (Y.G.); 2023612021010@stu.zafu.edu.cn (K.L.); 15968131641@163.com (Y.H.); 20080094@zafu.edu.cn (L.Y.) 
700 1 |a Huang, Yu  |u College of Optical, Mechanical and Electrical Engineering, Zhejiang A&amp;amp;F University, Hangzhou 311300, China; guyuqi@zafu.edu.cn (Y.G.); 2023612021010@stu.zafu.edu.cn (K.L.); 15968131641@163.com (Y.H.); 20080094@zafu.edu.cn (L.Y.) 
700 1 |a Fang Huimin  |u School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; fanghuimin@ujs.edu.cn 
700 1 |a Hassan, Muhammad  |u U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology, Islamabad 44000, Pakistan; hassan@uspcase.nust.edu.pk 
700 1 |a Yao Lijian  |u College of Optical, Mechanical and Electrical Engineering, Zhejiang A&amp;amp;F University, Hangzhou 311300, China; guyuqi@zafu.edu.cn (Y.G.); 2023612021010@stu.zafu.edu.cn (K.L.); 15968131641@163.com (Y.H.); 20080094@zafu.edu.cn (L.Y.) 
700 1 |a Zhao, Chao  |u College of Optical, Mechanical and Electrical Engineering, Zhejiang A&amp;amp;F University, Hangzhou 311300, China; guyuqi@zafu.edu.cn (Y.G.); 2023612021010@stu.zafu.edu.cn (K.L.); 15968131641@163.com (Y.H.); 20080094@zafu.edu.cn (L.Y.) 
773 0 |t Foods  |g vol. 14, no. 11 (2025), p. 1847 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217732199/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3217732199/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217732199/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch