Assessing the Accuracy and Consistency of Cropland Datasets and Their Influencing Factors on the Tibetan Plateau

Spremljeno u:
Bibliografski detalji
Izdano u:Remote Sensing vol. 17, no. 11 (2025), p. 1866
Glavni autor: Zhang Fuyao
Daljnji autori: Wang, Xue, Liangjie, Xin, Li, Xiubin
Izdano:
MDPI AG
Teme:
Online pristup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3217745940
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17111866  |2 doi 
035 |a 3217745940 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Zhang Fuyao  |u Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; zhangfuyao2414@igsnrr.ac.cn (F.Z.); xinlj@igsnrr.ac.cn (L.X.); lixb@igsnrr.ac.cn (X.L.) 
245 1 |a Assessing the Accuracy and Consistency of Cropland Datasets and Their Influencing Factors on the Tibetan Plateau 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a With advancements in cloud computing and machine learning algorithms, an increasing number of cropland datasets have been developed, including the China land-cover dataset (CLCD) and GlobeLand30 (GLC). The unique climatic conditions of the Tibetan Plateau (TP) introduce significant differences and uncertainties to these datasets. Here, we used a quantitative and visual integrated assessment approach to assess the accuracy and spatial consistency of five cropland datasets around 2020 in the TP, namely the CLCD, GLC30, land-use remote sensing monitoring dataset in China (CNLUCC), Global Land Analysis and Discovery (GLAD), and global land-cover product with a fine classification system (GLC_FCS). We analyzed the impact of terrain, climate, population, and vegetation indices on cropland spatial consistency using structural equation modeling (SEM). In this study, the GLAD cropland area had the highest fit with the national land survey (R2 = 0.88). County-level analysis revealed that the CLCD and GLC_FCS underestimated cropland areas in high-elevation counties, whereas the GLC and CNLUCC tended to overestimate cropland areas on the TP. Considering overall accuracy, GLC and GLAD performed the best with scores of 0.76 and 0.75, respectively. In contrast, CLCD (0.640), GLC_FCS (0.640), and CNLUCC (0.620) exhibited poor overall accuracy. This study highlights the significantly low spatial consistency of croplands on the TP, with only 10.60% consistency in high and complete agreement. The results showed substantial differences in spatial accuracy among zones, with relatively higher consistency observed in low-altitude zones and notably poorer accuracy in zones with sparse or fragmented cropland. The SEM results indicated that elevation and slope directly influenced cropland consistency, whereas temperature and precipitation indirectly affected cropland consistency by influencing vegetation indices. This study provides a valuable reference for implementing cropland datasets and future cropland mapping studies on the TP region. 
651 4 |a Tibetan Plateau 
651 4 |a China 
653 |a Vegetation 
653 |a Food security 
653 |a Accuracy 
653 |a Agricultural land 
653 |a Agricultural production 
653 |a Datasets 
653 |a Elevation 
653 |a Topography 
653 |a Remote sensing 
653 |a Remote monitoring 
653 |a Land use 
653 |a Machine learning 
653 |a Land cover 
653 |a Climate change 
653 |a Land surveys 
653 |a Precipitation 
653 |a Low altitude 
653 |a Climatic conditions 
653 |a Vegetation index 
653 |a Temperature 
653 |a Cloud computing 
653 |a Classification 
653 |a Regions 
653 |a Impact analysis 
653 |a Agricultural management 
653 |a Crops 
653 |a Plastic pollution 
700 1 |a Wang, Xue  |u Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; zhangfuyao2414@igsnrr.ac.cn (F.Z.); xinlj@igsnrr.ac.cn (L.X.); lixb@igsnrr.ac.cn (X.L.) 
700 1 |a Liangjie, Xin  |u Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; zhangfuyao2414@igsnrr.ac.cn (F.Z.); xinlj@igsnrr.ac.cn (L.X.); lixb@igsnrr.ac.cn (X.L.) 
700 1 |a Li, Xiubin  |u Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; zhangfuyao2414@igsnrr.ac.cn (F.Z.); xinlj@igsnrr.ac.cn (L.X.); lixb@igsnrr.ac.cn (X.L.) 
773 0 |t Remote Sensing  |g vol. 17, no. 11 (2025), p. 1866 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217745940/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3217745940/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217745940/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch