A Comprehensive Review of Path-Planning Algorithms for Planetary Rover Exploration

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Remote Sensing vol. 17, no. 11 (2025), p. 1924
Egile nagusia: Miao Qingliang
Beste egile batzuk: Guangfei, Wei
Argitaratua:
MDPI AG
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3217747260
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17111924  |2 doi 
035 |a 3217747260 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Miao Qingliang 
245 1 |a A Comprehensive Review of Path-Planning Algorithms for Planetary Rover Exploration 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Path-planning algorithms for planetary rovers are critical for autonomous robotic exploration, enabling the efficient and safe traversal of complex and dynamic extraterrestrial terrains. Unlike terrestrial mobile robots, planetary rovers must navigate highly unpredictable environments influenced by diverse factors such as terrain variability, obstacles, illumination conditions, and temperature fluctuations, necessitating advanced path-planning strategies to ensure mission success. This review comprehensively synthesizes recent advancements in planetary rover path-planning algorithms. First, we categorize these algorithms from a constraint-oriented perspective, distinguishing between internal rover state constraints and external environmental constraints. Next, we examine rule-based path-planning approaches, including graph search-based methods, potential field methods, sampling-based techniques, and dynamic window approaches, analyzing representative algorithms in each category. Subsequently, we explore bio-inspired path-planning methods, such as evolutionary algorithms, fuzzy computing, and machine learning-based approaches, with a particular emphasis on the latest developments and prospects of machine learning techniques in planetary rover navigation. Finally, we synthesize key insights from existing algorithms and discuss future research directions, highlighting their potential applications in planetary exploration missions. 
651 4 |a United States--US 
651 4 |a China 
653 |a Potential fields 
653 |a Space exploration 
653 |a Deep learning 
653 |a Algorithms 
653 |a Communication 
653 |a Machine learning 
653 |a Planetary rovers 
653 |a Synthesis 
653 |a Energy consumption 
653 |a Learning algorithms 
653 |a Evolutionary algorithms 
653 |a Robot learning 
653 |a Efficiency 
653 |a Exploration 
653 |a Artificial intelligence 
653 |a Lighting 
653 |a Moon 
653 |a Planning 
653 |a Genetic algorithms 
653 |a Constraints 
653 |a Path planning 
653 |a Mars 
700 1 |a Guangfei, Wei 
773 0 |t Remote Sensing  |g vol. 17, no. 11 (2025), p. 1924 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217747260/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3217747260/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217747260/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch