Harnessing Artificial Intelligence and Machine Learning for Identifying Quantitative Trait Loci (QTL) Associated with Seed Quality Traits in Crops

Uloženo v:
Podrobná bibliografie
Vydáno v:Plants vol. 14, no. 11 (2025), p. 1727
Hlavní autor: Kassem My Abdelmajid
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3217747336
003 UK-CbPIL
022 |a 2223-7747 
024 7 |a 10.3390/plants14111727  |2 doi 
035 |a 3217747336 
045 2 |b d20250101  |b d20251231 
084 |a 231551  |2 nlm 
100 1 |a Kassem My Abdelmajid 
245 1 |a Harnessing Artificial Intelligence and Machine Learning for Identifying Quantitative Trait Loci (QTL) Associated with Seed Quality Traits in Crops 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Seed quality traits, such as seed size, oil and protein content, mineral accumulation, and morphological characteristics, are crucial for enhancing crop productivity, nutritional value, and marketability. Traditional quantitative trait loci (QTL) mapping methods, such as linkage analysis and genome-wide association studies (GWAS), have played fundamental role in identifying loci associated with these complex traits. However, these approaches often struggle with high-dimensional genomic data, polygenic inheritance, and genotype-by-environment (GXE) interactions. Recent advances in artificial intelligence (AI) and machine learning (ML) provide powerful alternatives that enable more accurate trait prediction, robust marker-trait associations, and efficient feature selection. This review presents an integrated overview of AI/ML applications in QTL mapping and seed trait prediction, highlighting key methodologies such as LASSO regression, Random Forest, Gradient Boosting, ElasticNet, and deep learning techniques including convolutional neural networks (CNNs) and graph neural networks (GNNs). A case study on soybean seed mineral nutrients accumulation illustrates the effectiveness of ML models in identifying significant SNPs on chromosomes 8, 9, and 14. LASSO and ElasticNet consistently achieved superior predictive accuracy compared to tree-based models. Beyond soybean, AI/ML methods have enhanced QTL detection in wheat, lettuce, rice, and cotton, supporting trait dissection across diverse crop species. I also explored AI-driven integration of multi-omics data—genomics, transcriptomics, metabolomics, and phenomics—to improve resolution in QTL mapping. While challenges remain in terms of model interpretability, biological validation, and computational scalability, ongoing developments in explainable AI, multi-view learning, and high-throughput phenotyping offer promising avenues. This review underscores the transformative potential of AI in accelerating genomic-assisted breeding and developing high-quality, climate-resilient crop varieties. 
653 |a Physiology 
653 |a Accuracy 
653 |a Artificial intelligence 
653 |a Datasets 
653 |a Deep learning 
653 |a Genome-wide association studies 
653 |a Genetic markers 
653 |a Quantitative trait loci 
653 |a Genomics 
653 |a Metabolomics 
653 |a Artificial neural networks 
653 |a Accumulation 
653 |a Corn 
653 |a Polygenic inheritance 
653 |a Mapping 
653 |a Feature selection 
653 |a Nutritive value 
653 |a Machine learning 
653 |a Transcriptomics 
653 |a Genotypes 
653 |a Gene mapping 
653 |a Gene loci 
653 |a Genotype & phenotype 
653 |a Explainable artificial intelligence 
653 |a Learning algorithms 
653 |a Proteins 
653 |a Physical characteristics 
653 |a Nutrient content 
653 |a Crop production 
653 |a Crops 
653 |a Chromosomes 
653 |a Nutrients 
653 |a Phenotyping 
653 |a Crop resilience 
653 |a Graph neural networks 
653 |a Linkage analysis 
653 |a Marketability 
653 |a Genomic analysis 
653 |a Algorithms 
653 |a Soybeans 
653 |a Neural networks 
653 |a Climate change 
773 0 |t Plants  |g vol. 14, no. 11 (2025), p. 1727 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3217747336/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3217747336/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3217747336/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch