A novel approach combining YOLO and DeepSORT for detecting and counting live fish in natural environments through video

Zapisane w:
Opis bibliograficzny
Wydane w:PLoS One vol. 20, no. 6 (Jun 2025), p. e0323547
1. autor: Nguyen Minh Khiem
Kolejni autorzy: Tran Van Thanh, Nguyen, Hung Dung, Takahashi, Yuki
Wydane:
Public Library of Science
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3218003143
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0323547  |2 doi 
035 |a 3218003143 
045 2 |b d20250601  |b d20250630 
084 |a 174835  |2 nlm 
100 1 |a Nguyen Minh Khiem 
245 1 |a A novel approach combining YOLO and DeepSORT for detecting and counting live fish in natural environments through video 
260 |b Public Library of Science  |c Jun 2025 
513 |a Journal Article 
520 3 |a Applying Artificial Intelligence (AI) to the monitoring of live fish in natural environments represents a promising approach to the sustainable management of aquatic resources. Detecting and counting fish in water through video analysis is crucial for fish population statistics. This study employs AI algorithms, specifically YOLOv10 (You Only Look Once version 10) for identifying the presence fish in video frames, combined with the DeepSORT (Deep Simple Online and Realtime Tracking) algorithm to count the number of fish individual moving across the frames. A total of 9,002 frames were extracted from 13 videos recorded in five different environments: areas with submerged tree roots, shallow marine regions, coral reefs, bleached coral reefs and seagrass meadows. To train the recognition model, the dataset was divided into training, validation and testing sets in 8:1:1 ratio. The results demonstrated that the model achieved an accuracy of 89.5%, with processing times of 6.2ms for preprocessing, 387.0ms for inference and 0.9ms for postprocessing per image. The combination of YOLO and DeepSORT enhances the accuracy of tracking objects in aquatic environments, showing great potential for the monitoring of fishery resources. 
653 |a Behavior 
653 |a Accuracy 
653 |a Fisheries 
653 |a Artificial intelligence 
653 |a Datasets 
653 |a Fish 
653 |a Fish populations 
653 |a Sustainability management 
653 |a Algorithms 
653 |a Coral reefs 
653 |a Population statistics 
653 |a Fishery resources 
653 |a Aquatic environment 
653 |a Automation 
653 |a Statistical analysis 
653 |a Monitoring 
653 |a Tracking 
653 |a Research & development--R&D 
653 |a Frames (data processing) 
653 |a Computer vision 
653 |a Coral bleaching 
653 |a Neural networks 
653 |a Natural environment 
653 |a Fishing 
653 |a Object recognition 
653 |a Commercial fishing 
653 |a Population studies 
653 |a Fisheries management 
653 |a Environmental 
700 1 |a Tran Van Thanh 
700 1 |a Nguyen, Hung Dung 
700 1 |a Takahashi, Yuki 
773 0 |t PLoS One  |g vol. 20, no. 6 (Jun 2025), p. e0323547 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3218003143/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3218003143/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3218003143/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch