Chinese medical named entity recognition based on multimodal information fusion and hybrid attention mechanism

保存先:
書誌詳細
出版年:PLoS One vol. 20, no. 6 (Jun 2025), p. e0325660
第一著者: Luo, Zhen
その他の著者: Che, Jingping, Fan, Ji
出版事項:
Public Library of Science
主題:
オンライン・アクセス:Citation/Abstract
Full Text
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3218003990
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0325660  |2 doi 
035 |a 3218003990 
045 2 |b d20250601  |b d20250630 
084 |a 174835  |2 nlm 
100 1 |a Luo, Zhen 
245 1 |a Chinese medical named entity recognition based on multimodal information fusion and hybrid attention mechanism 
260 |b Public Library of Science  |c Jun 2025 
513 |a Journal Article 
520 3 |a Chinese Medical Named Entity Recognition (CMNER) seeks to identify and extract medical entities from unstructured medical texts. Existing methods often depend on single-modality representations and fail to fully exploit the complementary nature of different features. This paper presents a multimodal information fusion-based approach for medical named entity recognition, integrating a hybrid attention mechanism. A Dual-Stream Network architecture is employed to extract multimodal features at both the character and word levels, followed by deep fusion to enhance the model’s ability to recognize medical entities. The Cross-Stream Attention mechanism is introduced to facilitate information exchange between different modalities and capture cross-modal global dependencies. Multi-Head Attention is employed to further enhance feature representation and improve the model’s ability to delineate medical entity boundaries. The Conditional Random Field (CRF) layer is used for decoding, ensuring global consistency in entity predictions and thereby enhancing recognition accuracy and robustness. The proposed method achieves F1 scores of 65.26%, 80.31%, and 86.73% on the CMeEE-V2, IMCS-V2-NER, and CHIP-STS datasets, respectively, outperforming other models and demonstrating significant improvements in medical entity recognition accuracy and multiple evaluation metrics. 
653 |a Accuracy 
653 |a Machine learning 
653 |a Dictionaries 
653 |a Data integration 
653 |a Deep learning 
653 |a Conditional random fields 
653 |a Recognition 
653 |a Neural networks 
653 |a Representations 
653 |a Semantics 
653 |a Economic 
700 1 |a Che, Jingping 
700 1 |a Fan, Ji 
773 0 |t PLoS One  |g vol. 20, no. 6 (Jun 2025), p. e0325660 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3218003990/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3218003990/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3218003990/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch