Deep Learning and Heuristic Optimization for Secure and Efficient Energy Management in Smart Communities

Guardado en:
Bibliografiske detaljer
Udgivet i:Computer Modeling in Engineering & Sciences vol. 143, no. 2 (2025), p. 2027
Hovedforfatter: Khan, Murad
Andre forfattere: Mohammed, Faisal, Albogamy, Fahad, Diyan, Muhammad
Udgivet:
Tech Science Press
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3218152867
003 UK-CbPIL
022 |a 1526-1492 
022 |a 1526-1506 
024 7 |a 10.32604/cmes.2025.063764  |2 doi 
035 |a 3218152867 
045 2 |b d20250101  |b d20251231 
100 1 |a Khan, Murad 
245 1 |a Deep Learning and Heuristic Optimization for Secure and Efficient Energy Management in Smart Communities 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a The rapid advancements in distributed generation technologies, the widespread adoption of distributed energy resources, and the integration of 5G technology have spurred sharing economy businesses within the electricity sector. Revolutionary technologies such as blockchain, 5G connectivity, and Internet of Things (IoT) devices have facilitated peer-to-peer distribution and real-time response to fluctuations in supply and demand. Nevertheless, sharing electricity within a smart community presents numerous challenges, including intricate design considerations, equitable allocation, and accurate forecasting due to the lack of well-organized temporal parameters. To address these challenges, this proposed system is focused on sharing extra electricity within the smart community. The working of the proposed system is composed of five main phases. In phase 1, we develop a model to forecast the energy consumption of the appliances using the Long Short-Term Memory (LSTM) integrated with the attention module. In phase 2, based on the predicted energy consumption, we designed a smart scheduler with attention-induced Genetic Algorithm (GA) to schedule the appliances to reduce energy consumption. In phase 3, a dynamic Feed-in Tariff (dFIT) algorithm makes real-time tariff adjustments using LSTM for demand prediction and SHapley Additive exPlanations (SHAP) values to improve model transparency. In phase 4, the energy saved from solar systems and smart scheduling is shared with the community grid. Finally, in phase 5, SDP security ensures the integrity and confidentiality of shared energy data. To evaluate the performance of energy sharing and scheduling for houses with and without solar support, we simulated the above phases using data obtained from the energy consumption of 17 household appliances in our IoT laboratory. Finally, the simulation results show that the proposed scheme reduces energy consumption and ensures secure and efficient distribution with peers, promoting a more sustainable energy management and resilient smart community. 
653 |a Energy management 
653 |a Household appliances 
653 |a Scheduling 
653 |a Internet of Things 
653 |a Distributed generation 
653 |a Genetic algorithms 
653 |a Energy sources 
653 |a 5G mobile communication 
653 |a Tariffs 
653 |a Electricity pricing 
653 |a Real time 
653 |a Energy consumption 
653 |a Time response 
653 |a Deep learning 
700 1 |a Mohammed, Faisal 
700 1 |a Albogamy, Fahad 
700 1 |a Diyan, Muhammad 
773 0 |t Computer Modeling in Engineering & Sciences  |g vol. 143, no. 2 (2025), p. 2027 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3218152867/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3218152867/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch