A Qualitative Study of Multi-Cloud Applications Security for Multi-Cloud Developers

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Jagarlamudi, Jayasudha
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3218327269
003 UK-CbPIL
020 |a 9798280765375 
035 |a 3218327269 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Jagarlamudi, Jayasudha 
245 1 |a A Qualitative Study of Multi-Cloud Applications Security for Multi-Cloud Developers 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a As organizations increasingly adopt multi-cloud environments, they also face significant security challenges. Multi-cloud application developers are unable to utilize a common set of tools to address emerging security threats within multi-cloud applications, resulting in inconsistent practices, fragmented application programming interfaces, and limited visibility across platforms. This research explores how developers can overcome these challenges by identifying and implementing a unified set of security tools and frameworks. Using a qualitative exploratory approach, data were collected from 10 experienced multi-cloud developers to uncover key strategies for managing security risks. The research highlights five critical themes essential for securing multi-cloud environments: Application Security Practices, Monitoring, Visibility and Compliance, Threat Detection and Intelligence, Risk Management and Governance, and Infrastructure and Microservices Security. Findings emphasize the importance of embedding security early in the development lifecycle through Shift-Left Security, where security measures are integrated from the initial stages of development rather than being addressed later. The research also highlights the role of artificial intelligence and machine learning models in proactively detecting and mitigating threats before they can compromise systems. Additionally, adopting Zero Trust Architecture ensures that no entity is inherently trusted, strengthening access control and communication security across platforms. 
653 |a Computer science 
653 |a Artificial intelligence 
653 |a Information technology 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3218327269/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3218327269/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch