Electroencephalography Signal Analysis: Classification Techniques and Applications

Guardado en:
Detalles Bibliográficos
Publicado en:Applied Medical Informatics vol. 47, no. 1 (2025), p. S12
Autor principal: Goga, Losif-Beniamin
Publicado:
SRIMA Publishing House
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3218517287
003 UK-CbPIL
022 |a 1224-5593 
022 |a 2067-7855 
035 |a 3218517287 
045 2 |b d20250101  |b d20250331 
084 |a 106509  |2 nlm 
100 1 |a Goga, Losif-Beniamin  |u Computer Science Department, West University of Timisoara, Vasile Parvan Blvd., no. 4, 300223 Timisoara, Romania 
245 1 |a Electroencephalography Signal Analysis: Classification Techniques and Applications 
260 |b SRIMA Publishing House  |c 2025 
513 |a Journal Article 
520 3 |a Electroencephalography (EEG) signal analysis has become a crucial tool in neuroscience, biomedical engineering, and brain-computer interfaces (BCI) applications. This study explored EEG signal processing and classification techniques, focusing on applications driven by visual stimuli. The main focus of the study is the use of visually evoked potentials (VEPs) and steadystate visual evoked potentials (SSVEPs), which are widely used in BCI applications. Several signal acquisition and preprocessing techniques were investigated, including artifact removal, feature extraction methods, such as wavelet transforms and common spatial patterns, combined with classification approaches like support vector machines (SVM), and signal enhancement methods. The impact of stimulus type, frequency, and presentation techniques on EEG signal quality and classification accuracy was also analyzed. The primary application included a P300 speller for hands-free text input, a browser plugin enabling seamless web navigation via brain signals, and a desktop control system for interacting with operating systems and software. These applications demonstrate the usefulness of BCls in day-to-day life, using only visual stimuli, such as flashing images and other visual queues as a means of communicating with the computer. The ultimate goal is to offer assistive solutions for people with disabilities and push the boundaries of non-invasive neurotechnology in everyday life. 
653 |a Software 
653 |a Signal analysis 
653 |a Classification 
653 |a Signal processing 
653 |a Wavelet transforms 
653 |a Human-computer interface 
653 |a Support vector machines 
653 |a Visual stimuli 
653 |a Evoked potentials 
653 |a People with disabilities 
653 |a Signal quality 
653 |a Communication 
653 |a Biomedical engineering 
653 |a Neurosciences 
653 |a Electroencephalography 
773 0 |t Applied Medical Informatics  |g vol. 47, no. 1 (2025), p. S12 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3218517287/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3218517287/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3218517287/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch