A two-stage random-effects estimator for meta-analyses of the value per statistical life

Guardat en:
Dades bibliogràfiques
Publicat a:PLoS One vol. 20, no. 6 (Jun 2025), p. e0324630
Autor principal: Newbold, Stephen C
Altres autors: Dockins, Chris, Simon, Nathalie, Maguire, Kelly, Abdullah Muhammad Sakib
Publicat:
Public Library of Science
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3218648222
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0324630  |2 doi 
035 |a 3218648222 
045 2 |b d20250601  |b d20250630 
084 |a 174835  |2 nlm 
100 1 |a Newbold, Stephen C 
245 1 |a A two-stage random-effects estimator for meta-analyses of the value per statistical life 
260 |b Public Library of Science  |c Jun 2025 
513 |a Evidence Based Healthcare Journal Article 
520 3 |a We developed and examined the performance of a two-stage random-effects meta-analysis estimator for synthesizing published estimates of the value per statistical life (VSL). The meta-estimation approach accommodates unbalanced panels with one or multiple observations from each independent group of primary estimates, and distinguishes between sampling and non-sampling sources of error, both within and between groups. We used Monte Carlo simulation experiments to test the performance of the meta-estimator on constructed datasets. Simulation results indicate that, when applied to datasets of modest size, the approach performs best when the within-group non-sampling error variances are assumed to be homogeneous among groups. This allows for two levels of non-sampling errors while preserving degrees of freedom and therefore increasing statistical efficiency. Simulation results also show that the estimator compares favorably to several other commonly used meta-analysis estimators, including other two-stage estimators. As a demonstration, we applied the approach to a pre-existing meta-dataset including 113 VSL estimates assembled from 10 revealed preference and 9 stated preference studies conducted in the U.S. and published between 1999 and 2019. 
610 4 |a Environmental Protection Agency--EPA 
651 4 |a United States--US 
653 |a Statistics 
653 |a Datasets 
653 |a Estimates 
653 |a Air pollution 
653 |a Estimators 
653 |a Outdoor air quality 
653 |a Sampling 
653 |a Bias 
653 |a COVID-19 
653 |a Monte Carlo simulation 
653 |a Research methodology 
653 |a Fatalities 
653 |a Public health 
653 |a Meta-analysis 
653 |a Environmental protection 
653 |a Public policy 
653 |a Social 
700 1 |a Dockins, Chris 
700 1 |a Simon, Nathalie 
700 1 |a Maguire, Kelly 
700 1 |a Abdullah Muhammad Sakib 
773 0 |t PLoS One  |g vol. 20, no. 6 (Jun 2025), p. e0324630 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3218648222/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3218648222/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3218648222/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch