Vertical distribution characteristics and source apportionment of nitrogen in the Longyangxia Reservoir in the upper reaches of the Yellow River

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 6 (Jun 2025), p. e0326038
Autor principal: Wu, Wei
Otros Autores: Dong, Yuhe, Chen, Li, Chen, Hang, Ren, Lei, Xu, Sheng
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3219283239
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0326038  |2 doi 
035 |a 3219283239 
045 2 |b d20250601  |b d20250630 
084 |a 174835  |2 nlm 
100 1 |a Wu, Wei 
245 1 |a Vertical distribution characteristics and source apportionment of nitrogen in the Longyangxia Reservoir in the upper reaches of the Yellow River 
260 |b Public Library of Science  |c Jun 2025 
513 |a Journal Article 
520 3 |a Studying the biogeochemical cycle of biogenic nitrogen and its influence on hydrological processes and anthropogenic nitrogen input is of great significance for water resource management and the maintenance of aquatic ecosystems in ecologically sensitive areas. Currently, there is a limited understanding of the sources contributing to nitrate levels during thermal stratification in deep and large reservoirs, as well as the transformation processes of nitrate under varying hydrological conditions. This study collected water samples from the Longyangxia Reservoir, located in the upper reaches of the Yellow River, during January and April of 2024. Utilizing hydrogeochemical analysis, multivariate stable isotope technology, the Bayesian isotope mixing model, and multivariate statistical analysis, we analyzed the vertical distribution characteristics of nitrogen in the reservoir across different periods. The transformations and sources of nitrogen were identified, and the contribution rates of each nitrogen source were estimated. The results indicate that January serves as the mixing period for the Longyangxia Reservoir, during which the differences in nitrogen concentration among the vertical water layers are relatively minimal. The concentration ranges for nitrate (NO₃⁻), dissolved organic nitrogen (DON), and ammonium (NH₄⁺) were observed to be 0.598–0.647 mg/L, 0.124–0.397 mg/L, and 0.015–0.157 mg/L, respectively. Beginning in April, the reservoir enters the thermal stratification period, characterized by higher concentrations of various nitrogen forms compared to the mixing period. During the stratification period, the concentration of various nitrogen forms within the vertical profile of the reservoir demonstrates a characteristic distribution of being low in the upper section, maximum values of total nitrogen (TN) and dissolved DON in the middle section, and maximum concentrations of NO₃⁻ and NH₄⁺ in the bottom section. Nitrate nitrogen and dissolved organic nitrogen are the primary forms of nitrogen present in the Longyangxia Reservoir, constituting 66.71% and 25.83% of the total dissolved nitrogen in January, and 62.39% and 21.59% in April, respectively. During the sampling period at Longyangxia Reservoir, the δ15N-NO3- values in the water ranged from 5.58 ‰ to 7.38 ‰, while the δ18O-NO3- values varied from −5.87 ‰ to 2.58 ‰. Nitrification is identified as the primary nitrogen conversion process occurring in the reservoir water. Under aerobic conditions, denitrification does not occur in aquatic environments. The dynamics of nitrate in the bottom layer are influenced by nitrification processes and the release of nitrogen from sediment. Soil organic nitrogen is the primary source of nitrate in Longyangxia water, contributing 42.1% and 51.8% during the sampling period, respectively. This study introduced sediment as an additional end member, highlighting that the contribution of sediment to nitrate in water is significant, accounting for 24% and 14.1%, respectively. This study offers valuable insights for precise nitrogen management and control in deep reservoirs by tracking nitrate sources and quantifying their contributions. 
651 4 |a China 
651 4 |a Yellow River 
653 |a Thermal stratification 
653 |a Dams 
653 |a Biogeochemical cycles 
653 |a Hydrogeochemistry 
653 |a Surface water 
653 |a Biogeochemistry 
653 |a Nitrogen 
653 |a Rivers 
653 |a Sediments 
653 |a Sampling 
653 |a Human influences 
653 |a Nitrates 
653 |a Resource management 
653 |a Water quality 
653 |a Water resources management 
653 |a Vertical distribution 
653 |a Aerobic conditions 
653 |a Bayesian analysis 
653 |a Ammonium 
653 |a Multivariate analysis 
653 |a Reservoirs 
653 |a Multivariate statistical analysis 
653 |a Aquatic environment 
653 |a Water temperature 
653 |a Flow velocity 
653 |a Water stratification 
653 |a Dissolved organic nitrogen 
653 |a Water sampling 
653 |a Aquatic ecosystems 
653 |a Organic nitrogen 
653 |a Water analysis 
653 |a Nitrification 
653 |a Nitrate sources 
653 |a Drinking water 
653 |a Statistical analysis 
653 |a Stable isotopes 
653 |a Statistical models 
653 |a Hydrologic processes 
653 |a Reservoir water 
653 |a River ecology 
653 |a Isotopes 
653 |a Denitrification 
653 |a Environmental 
700 1 |a Dong, Yuhe 
700 1 |a Chen, Li 
700 1 |a Chen, Hang 
700 1 |a Ren, Lei 
700 1 |a Xu, Sheng 
773 0 |t PLoS One  |g vol. 20, no. 6 (Jun 2025), p. e0326038 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3219283239/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3219283239/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3219283239/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch