Big Data Analytics in IoT, social media, NLP, and information security: trends, challenges, and applications

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Cyhoeddwyd yn:Journal of Big Data vol. 12, no. 1 (Jun 2025), p. 150
Cyhoeddwyd:
Springer Nature B.V.
Pynciau:
Mynediad Ar-lein:Citation/Abstract
Full Text - PDF
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!

MARC

LEADER 00000nab a2200000uu 4500
001 3219507470
003 UK-CbPIL
022 |a 2196-1115 
024 7 |a 10.1186/s40537-025-01192-9  |2 doi 
035 |a 3219507470 
045 2 |b d20250601  |b d20250630 
245 1 |a Big Data Analytics in IoT, social media, NLP, and information security: trends, challenges, and applications 
260 |b Springer Nature B.V.  |c Jun 2025 
513 |a Journal Article 
520 3 |a This paper presents a comprehensive, domain-specific survey and experimental evaluation of machine learning techniques for Big Data Analytics across four critical domains: IoT, Social Media, Natural Language Processing (NLP), and Information Security. A novel taxonomic framework is introduced to classify and analyze the suitability of algorithms based on empirical, experimental, and computational perspectives. The study integrates large-scale experimental benchmarking of key techniques—including CNN, XGBoost, Self-Supervised Learning (SSL), Graph Neural Networks (GNN), ELM, KNN, and Decision Trees—using real-world and synthetic datasets, and evaluates them across five performance metrics: accuracy, F1-score, precision, recall, and computational time. Key findings reveal that: (1) GNN and Self-Supervised Learning (SSL) are top performers in terms of predictive performance and efficiency in domains such as IoT and Social Media, (2) XGBoost and CNN offer superior accuracy and robustness across structured and unstructured data tasks, though CNN incurs higher computational costs, (3) ELM and Decision Trees are better suited for lightweight or interpretable applications, and (4) KNN generally underperforms in scalability and predictive strength for large-scale tasks. The taxonomy and experiments collectively demonstrate the need for context-aware algorithm selection, particularly for real-time and scalable Big Data applications. By aligning algorithmic properties with domain-specific challenges, this study offers actionable insights for researchers and practitioners seeking effective analytic strategies in the evolving landscape of Big Data. 
610 4 |a CNN 
653 |a Big Data 
653 |a Social networks 
653 |a Artificial neural networks 
653 |a Taxonomy 
653 |a Data analysis 
653 |a Machine learning 
653 |a Decision trees 
653 |a Accuracy 
653 |a Self-supervised learning 
653 |a Performance measurement 
653 |a Graph neural networks 
653 |a Computational efficiency 
653 |a Computing costs 
653 |a Algorithms 
653 |a Natural language processing 
653 |a Unstructured data 
653 |a Real time 
653 |a Cybersecurity 
653 |a Computing time 
653 |a Digital media 
653 |a Synthetic data 
653 |a Experiments 
653 |a Classification 
653 |a Property 
653 |a Robustness 
653 |a Mass media 
653 |a Security 
653 |a Social media 
653 |a Neural networks 
653 |a Trees 
653 |a Data processing 
653 |a Suitability 
653 |a Application 
653 |a Decision making 
773 0 |t Journal of Big Data  |g vol. 12, no. 1 (Jun 2025), p. 150 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3219507470/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3219507470/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch