Perspectives on Using Artificial Intelligence to Derive Social Determinants of Health Data From Medical Records in Canada: Large Multijurisdictional Qualitative Study

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Medical Internet Research vol. 27 (2025), p. e52244
Hlavní autor: Davis, Victoria H
Další autoři: Jinfan Rose Qiang, MacCarthy, Itunuoluwa Adekoya, Howse, Dana, Seshie, Abigail Zita, Kosowan, Leanne, Delahunty-Pike, Alannah, Abaga, Eunice, Cooney, Jane, Robinson, Marjeiry, Senior, Dorothy, Zsager, Alexander, Aubrey-Bassler, Kris, Irwin, Mandi, Jackson, Lois A, Katz, Alan, Emily Gard Marshall, Muhajarine, Nazeem, Neudorf, Cory, Garies, Stephanie, Pinto, Andrew D
Vydáno:
Gunther Eysenbach MD MPH, Associate Professor
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3222367766
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/52244  |2 doi 
035 |a 3222367766 
045 2 |b d20250101  |b d20251231 
100 1 |a Davis, Victoria H 
245 1 |a Perspectives on Using Artificial Intelligence to Derive Social Determinants of Health Data From Medical Records in Canada: Large Multijurisdictional Qualitative Study 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:Data on the social determinants of health could be used to improve care, support quality improvement initiatives, and track progress toward health equity. However, this data collection is not widespread. Artificial intelligence (AI), specifically natural language processing and machine learning, could be used to derive social determinants of health data from electronic medical records. This could reduce the time and resources required to obtain social determinants of health data.Objective:This study aimed to understand perspectives of a diverse sample of Canadians on the use of AI to derive social determinants of health information from electronic medical record data, including benefits and concerns.Methods:Using a qualitative description approach, in-depth interviews were conducted with 195 participants purposefully recruited from Ontario, Newfoundland and Labrador, Manitoba, and Saskatchewan. Transcripts were analyzed using an inductive and deductive content analysis.Results:A total of 4 themes were identified. First, AI was described as the inevitable future, facilitating more efficient, accessible social determinants of health information and use in primary care. Second, participants expressed concerns about potential health care harms and a distrust in AI and public systems. Third, some participants indicated that AI could lead to a loss of the human touch in health care, emphasizing a preference for strong relationships with providers and individualized care. Fourth, participants described the critical importance of consent and the need for strong safeguards to protect patient data and trust.Conclusions:These findings provide important considerations for the use of AI in health care, and particularly when health care administrators and decision makers seek to derive social determinants of health data. 
651 4 |a Manitoba Canada 
651 4 |a Canada 
651 4 |a Newfoundland & Labrador Canada 
651 4 |a Saskatchewan Canada 
653 |a Health care access 
653 |a Medical records 
653 |a Quality management 
653 |a Health disparities 
653 |a Software 
653 |a Safeguards 
653 |a Health care policy 
653 |a Content analysis 
653 |a Health status 
653 |a Primary care 
653 |a Health initiatives 
653 |a Interviews 
653 |a Artificial intelligence 
653 |a Patients 
653 |a Machine learning 
653 |a Clinical decision making 
653 |a Multimedia 
653 |a Decision makers 
653 |a Social factors 
653 |a Public health 
653 |a Data collection 
653 |a Computerized medical records 
653 |a Algorithms 
653 |a Qualitative research 
653 |a Health information 
653 |a Quality of care 
653 |a Archives & records 
653 |a Data quality 
653 |a Data processing 
653 |a Health services 
653 |a Medical decision making 
653 |a Information technology 
653 |a Natural language processing 
653 |a Administrators 
653 |a Health care 
700 1 |a Jinfan Rose Qiang 
700 1 |a MacCarthy, Itunuoluwa Adekoya 
700 1 |a Howse, Dana 
700 1 |a Seshie, Abigail Zita 
700 1 |a Kosowan, Leanne 
700 1 |a Delahunty-Pike, Alannah 
700 1 |a Abaga, Eunice 
700 1 |a Cooney, Jane 
700 1 |a Robinson, Marjeiry 
700 1 |a Senior, Dorothy 
700 1 |a Zsager, Alexander 
700 1 |a Aubrey-Bassler, Kris 
700 1 |a Irwin, Mandi 
700 1 |a Jackson, Lois A 
700 1 |a Katz, Alan 
700 1 |a Emily Gard Marshall 
700 1 |a Muhajarine, Nazeem 
700 1 |a Neudorf, Cory 
700 1 |a Garies, Stephanie 
700 1 |a Pinto, Andrew D 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e52244 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222367766/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3222367766/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222367766/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch