Two-Layer Retrieval-Augmented Generation Framework for Low-Resource Medical Question Answering Using Reddit Data: Proof-of-Concept Study

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Medical Internet Research vol. 27 (2025), p. e66220
Autor principal: Das, Sudeshna
Otros Autores: Yao Ge, Guo, Yuting, Rajwal, Swati, Hairston, JaMor, Powell, Jeanne, Walker, Drew, Peddireddy, Snigdha, Lakamana, Sahithi, Bozkurt, Selen, Reyna, Matthew, Sameni, Reza, Xiao, Yunyu, Kim, Sangmi, Chandler, Rasheeta, Hernandez, Natalie, Mowery, Danielle, Wightman, Rachel, Love, Jennifer, Spadaro, Anthony, Perrone, Jeanmarie, Sarker, Abeed
Publicado:
Gunther Eysenbach MD MPH, Associate Professor
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3222367931
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/66220  |2 doi 
035 |a 3222367931 
045 2 |b d20250101  |b d20251231 
100 1 |a Das, Sudeshna 
245 1 |a Two-Layer Retrieval-Augmented Generation Framework for Low-Resource Medical Question Answering Using Reddit Data: Proof-of-Concept Study 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:The increasing use of social media to share lived and living experiences of substance use presents a unique opportunity to obtain information on side effects, use patterns, and opinions on novel psychoactive substances. However, due to the large volume of data, obtaining useful insights through natural language processing technologies such as large language models is challenging.Objective:This paper aims to develop a retrieval-augmented generation (RAG) architecture for medical question answering pertaining to clinicians’ queries on emerging issues associated with health-related topics, using user-generated medical information on social media.Methods:We proposed a two-layer RAG framework for query-focused answer generation and evaluated a proof of concept for the framework in the context of query-focused summary generation from social media forums, focusing on emerging drug-related information. Our modular framework generates individual summaries followed by an aggregated summary to answer medical queries from large amounts of user-generated social media data in an efficient manner. We compared the performance of a quantized large language model (Nous-Hermes-2-7B-DPO), deployable in low-resource settings, with GPT-4. For this proof-of-concept study, we used user-generated data from Reddit to answer clinicians’ questions on the use of xylazine and ketamine.Results:Our framework achieves comparable median scores in terms of relevance, length, hallucination, coverage, and coherence when evaluated using GPT-4 and Nous-Hermes-2-7B-DPO, evaluated for 20 queries with 76 samples. There was no statistically significant difference between GPT-4 and Nous-Hermes-2-7B-DPO for coverage (Mann-Whitney U=733.0; n1=37; n2=39; P=.89 two-tailed), coherence (U=670.0; n1=37; n2=39; P=.49 two-tailed), relevance (U=662.0; n1=37; n2=39; P=.15 two-tailed), length (U=672.0; n1=37; n2=39; P=.55 two-tailed), and hallucination (U=859.0; n1=37; n2=39; P=.01 two-tailed). A statistically significant difference was noted for the Coleman-Liau Index (U=307.5; n1=20; n2=16; P<.001 two-tailed).Conclusions:Our RAG framework can effectively answer medical questions about targeted topics and can be deployed in resource-constrained settings. 
651 4 |a United States--US 
653 |a Readability 
653 |a Drug overdose 
653 |a Drug withdrawal 
653 |a Multimedia 
653 |a Hypotheses 
653 |a Substance abuse 
653 |a Ketamine 
653 |a Social media 
653 |a Retrieval 
653 |a Side effects 
653 |a Frame analysis 
653 |a Likert scale 
653 |a Data collection 
653 |a Queries 
653 |a Large language models 
653 |a Augmentation 
653 |a Retrieval performance measures 
653 |a Information retrieval 
653 |a Coherence 
653 |a Clinical information 
653 |a Answers 
653 |a Data processing 
653 |a Models 
653 |a Mass media 
653 |a Attitudes 
653 |a Question answer sequences 
653 |a Drug effects 
653 |a Natural language processing 
653 |a Information 
653 |a Language 
653 |a Language modeling 
700 1 |a Yao Ge 
700 1 |a Guo, Yuting 
700 1 |a Rajwal, Swati 
700 1 |a Hairston, JaMor 
700 1 |a Powell, Jeanne 
700 1 |a Walker, Drew 
700 1 |a Peddireddy, Snigdha 
700 1 |a Lakamana, Sahithi 
700 1 |a Bozkurt, Selen 
700 1 |a Reyna, Matthew 
700 1 |a Sameni, Reza 
700 1 |a Xiao, Yunyu 
700 1 |a Kim, Sangmi 
700 1 |a Chandler, Rasheeta 
700 1 |a Hernandez, Natalie 
700 1 |a Mowery, Danielle 
700 1 |a Wightman, Rachel 
700 1 |a Love, Jennifer 
700 1 |a Spadaro, Anthony 
700 1 |a Perrone, Jeanmarie 
700 1 |a Sarker, Abeed 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e66220 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222367931/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3222367931/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222367931/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch