ChatGPT for Univariate Statistics: Validation of AI-Assisted Data Analysis in Healthcare Research

Salvato in:
Dettagli Bibliografici
Pubblicato in:Journal of Medical Internet Research vol. 27 (2025), p. e63550
Autore principale: Ruta, Michael R
Altri autori: Gaidici, Tony, Chase, Irwin, Lifshitz, Jonathan
Pubblicazione:
Gunther Eysenbach MD MPH, Associate Professor
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3222367933
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/63550  |2 doi 
035 |a 3222367933 
045 2 |b d20250101  |b d20251231 
100 1 |a Ruta, Michael R 
245 1 |a ChatGPT for Univariate Statistics: Validation of AI-Assisted Data Analysis in Healthcare Research 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:ChatGPT, a conversational artificial intelligence developed by OpenAI, has rapidly become an invaluable tool for researchers. With the recent integration of Python code interpretation into the ChatGPT environment, there has been a significant increase in the potential utility of ChatGPT as a research tool, particularly in terms of data analysis applications.Objective:This study aimed to assess ChatGPT as a data analysis tool and provide researchers with a framework for applying ChatGPT to data management tasks, descriptive statistics, and inferential statistics.Methods:A subset of the National Inpatient Sample was extracted. Data analysis trials were divided into data processing, categorization, and tabulation, as well as descriptive and inferential statistics. For data processing, categorization, and tabulation assessments, ChatGPT was prompted to reclassify variables, subset variables, and present data, respectively. Descriptive statistics assessments included mean, SD, median, and IQR calculations. Inferential statistics assessments were conducted at varying levels of prompt specificity (“Basic,” “Intermediate,” and “Advanced”). Specific tests included chi-square, Pearson correlation, independent 2-sample t test, 1-way ANOVA, Fisher exact, Spearman correlation, Mann-Whitney U test, and Kruskal-Wallis H test. Outcomes from consecutive prompt-based trials were assessed against expected statistical values calculated in Python (Python Software Foundation), SAS (SAS Institute), and RStudio (Posit PBC).Results:ChatGPT accurately performed data processing, categorization, and tabulation across all trials. For descriptive statistics, it provided accurate means, SDs, medians, and IQRs across all trials. Inferential statistics accuracy against expected statistical values varied with prompt specificity: 32.5% accuracy for “Basic” prompts, 81.3% for “Intermediate” prompts, and 92.5% for “Advanced” prompts.Conclusions:ChatGPT shows promise as a tool for exploratory data analysis, particularly for researchers with some statistical knowledge and limited programming expertise. However, its application requires careful prompt construction and human oversight to ensure accuracy. As a supplementary tool, ChatGPT can enhance data analysis efficiency and broaden research accessibility. 
653 |a Artificial intelligence 
653 |a Analysis 
653 |a Health care 
653 |a Nonparametric statistics 
653 |a Datasets 
653 |a Length of stay 
653 |a Classification 
653 |a Bioinformatics 
653 |a Multimedia 
653 |a Data processing 
653 |a Variables 
653 |a Data analysis 
653 |a Statistical inference 
653 |a Medical research 
653 |a Python 
653 |a Tests 
653 |a Expected values 
653 |a Chatbots 
653 |a Statistical methods 
653 |a Inpatient care 
653 |a Access 
653 |a Accuracy 
653 |a Statistical analysis 
653 |a Health services 
653 |a Conversation 
653 |a Statistics 
653 |a Research methodology 
653 |a Human-computer interaction 
653 |a Variance analysis 
653 |a Programming languages 
653 |a Research 
653 |a Evaluation 
653 |a Researchers 
700 1 |a Gaidici, Tony 
700 1 |a Chase, Irwin 
700 1 |a Lifshitz, Jonathan 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e63550 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222367933/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3222367933/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222367933/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch