Characterizing Public Sentiments and Drug Interactions in the COVID-19 Pandemic Using Social Media: Natural Language Processing and Network Analysis

Сохранить в:
Библиографические подробности
Опубликовано в::Journal of Medical Internet Research vol. 27 (2025), p. e63755
Главный автор: Li, Wanxin
Другие авторы: Hua, Yining, Zhou, Peilin, Zhou, Li, Xu, Xin, Yang, Jie
Опубликовано:
Gunther Eysenbach MD MPH, Associate Professor
Предметы:
Online-ссылка:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3222368101
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/63755  |2 doi 
035 |a 3222368101 
045 2 |b d20250101  |b d20251231 
100 1 |a Li, Wanxin 
245 1 |a Characterizing Public Sentiments and Drug Interactions in the COVID-19 Pandemic Using Social Media: Natural Language Processing and Network Analysis 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:While the COVID-19 pandemic has induced massive discussion of available medications on social media, traditional studies focused only on limited aspects, such as public opinions, and endured reporting biases, inefficiency, and long collection times.Objective:Harnessing drug-related data posted on social media in real-time can offer insights into how the pandemic impacts drug use and monitor misinformation. This study aimed to develop a natural language processing (NLP) pipeline tailored for the analysis of social media discourse on COVID-19–related drugs.Methods:This study constructed a full pipeline for COVID-19–related drug tweet analysis, using pretrained language model–based NLP techniques as the backbone. This pipeline is architecturally composed of 4 core modules: named entity recognition and normalization to identify medical entities from relevant tweets and standardize them to uniform medication names for time trend analysis, target sentiment analysis to reveal sentiment polarities associated with the entities, topic modeling to understand underlying themes discussed by the population, and drug network analysis to dig potential adverse drug reactions (ADR) and drug-drug interactions (DDI). The pipeline was deployed to analyze tweets related to the COVID-19 pandemic and drug therapies between February 1, 2020, and April 30, 2022.Results:From a dataset comprising 169,659,956 COVID-19–related tweets from 103,682,686 users, our named entity recognition model identified 2,124,757 relevant tweets sourced from 1,800,372 unique users, and the top 5 most-discussed drugs: ivermectin, hydroxychloroquine, remdesivir, zinc, and vitamin D. Time trend analysis revealed that the public focused mostly on repurposed drugs (ie, hydroxychloroquine and ivermectin), and least on remdesivir, the only officially approved drug among the 5. Sentiment analysis of the top 5 most-discussed drugs revealed that public perception was predominantly shaped by celebrity endorsements, media hot spots, and governmental directives rather than empirical evidence of drug efficacy. Topic analysis obtained 15 general topics of overall drug-related tweets, with “clinical treatment effects of drugs” and “physical symptoms” emerging as the most frequently discussed topics. Co-occurrence matrices and complex network analysis further identified emerging patterns of DDI and ADR that could be critical for public health surveillance like better safeguarding public safety in medicines use.Conclusions:This study shows that an NLP-based pipeline can be a robust tool for large-scale public health monitoring and can offer valuable supplementary data for traditional epidemiological studies concerning DDI and ADR. The framework presented here aspires to serve as a cornerstone for future social media–based public health analytics. 
653 |a Language 
653 |a Analysis 
653 |a COVID-19 vaccines 
653 |a Accuracy 
653 |a Datasets 
653 |a Application programming interface 
653 |a Public health 
653 |a Drug interactions 
653 |a Data mining 
653 |a Celebrities 
653 |a Social networks 
653 |a Data analysis 
653 |a Efficacy 
653 |a Acknowledgment 
653 |a Pharmacovigilance 
653 |a Physical symptoms 
653 |a Drug abuse 
653 |a Drug therapy 
653 |a Ivermectin 
653 |a Matrices 
653 |a Drugs 
653 |a Sentiment analysis 
653 |a Health surveillance 
653 |a Multimedia 
653 |a Misinformation 
653 |a Social media 
653 |a COVID-19 
653 |a Pandemics 
653 |a Medical research 
653 |a Data collection 
653 |a Critical incidents 
653 |a Natural language processing 
653 |a Topics 
653 |a Network analysis 
653 |a Public opinion 
653 |a Vitamin D 
653 |a Comorbidity 
653 |a Public safety 
653 |a Normalization 
653 |a Medical treatment 
653 |a Vitamins 
653 |a Discourse analysis 
653 |a Computer mediated communication 
653 |a Mass media 
653 |a Mass media images 
653 |a Fame 
653 |a Epidemiology 
653 |a Recognition 
653 |a Attitudes 
653 |a Surveillance 
653 |a Drug effects 
653 |a Language modeling 
700 1 |a Hua, Yining 
700 1 |a Zhou, Peilin 
700 1 |a Zhou, Li 
700 1 |a Xu, Xin 
700 1 |a Yang, Jie 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e63755 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222368101/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3222368101/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222368101/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch