Psychological Factors Influencing Appropriate Reliance on AI-enabled Clinical Decision Support Systems: Experimental Web-Based Study Among Dermatologists

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Medical Internet Research vol. 27 (2025), p. e58660
Autor principal: Küper, Alisa
Otros Autores: Lodde, Georg Christian, Livingstone, Elisabeth, Schadendorf, Dirk, Krämer, Nicole
Publicado:
Gunther Eysenbach MD MPH, Associate Professor
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3222368136
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/58660  |2 doi 
035 |a 3222368136 
045 2 |b d20250101  |b d20251231 
100 1 |a Küper, Alisa 
245 1 |a Psychological Factors Influencing Appropriate Reliance on AI-enabled Clinical Decision Support Systems: Experimental Web-Based Study Among Dermatologists 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:Artificial intelligence (AI)–enabled decision support systems are critical tools in medical practice; however, their reliability is not absolute, necessitating human oversight for final decision-making. Human reliance on such systems can vary, influenced by factors such as individual psychological factors and physician experience.Objective:This study aimed to explore the psychological factors influencing subjective trust and reliance on medical AI’s advice, specifically examining relative AI reliance and relative self-reliance to assess the appropriateness of reliance.Methods:A survey was conducted with 223 dermatologists, which included lesion image classification tasks and validated questionnaires assessing subjective trust, propensity to trust technology, affinity for technology interaction, control beliefs, need for cognition, as well as queries on medical experience and decision confidence.Results:A 2-tailed t test revealed that participants’ accuracy improved significantly with AI support (t222=−3.3; P<.001; Cohen d=4.5), but only by an average of 1% (1/100). Reliance on AI was stronger for correct advice than for incorrect advice (t222=4.2; P<.001; Cohen d=0.1). Notably, participants demonstrated a mean relative AI reliance of 10.04% (139/1384) and a relative self-reliance of 85.6% (487/569), indicating a high level of self-reliance but a low level of AI reliance. Propensity to trust technology influenced AI reliance, mediated by trust (indirect effect=0.024, 95% CI 0.008-0.042; P<.001), and medical experience negatively predicted AI reliance (indirect effect=–0.001, 95% CI –0.002 to −0.001; P<.001).Conclusions:The findings highlight the need to design AI support systems in a way that assists less experienced users with a high propensity to trust technology to identify potential AI errors, while encouraging experienced physicians to actively engage with system recommendations and potentially reassess initial decisions. 
653 |a Dermatology 
653 |a Artificial intelligence 
653 |a Patient assessment 
653 |a Accuracy 
653 |a Collaboration 
653 |a Affinity 
653 |a Clinical decision making 
653 |a Hypotheses 
653 |a Cognition 
653 |a Reliance 
653 |a Skin cancer 
653 |a Physicians 
653 |a Decision support systems 
653 |a Reliability 
653 |a Cognitive ability 
653 |a Technology 
653 |a Influence 
653 |a Propensity 
653 |a Psychological aspects 
653 |a Health services 
653 |a Cognition & reasoning 
653 |a Computerized decision support systems 
653 |a Errors 
653 |a Subjectivity 
653 |a Classification 
653 |a Experience 
653 |a Self evaluation 
653 |a Decision making 
653 |a Trust 
653 |a Support networks 
653 |a Medical decision making 
700 1 |a Lodde, Georg Christian 
700 1 |a Livingstone, Elisabeth 
700 1 |a Schadendorf, Dirk 
700 1 |a Krämer, Nicole 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e58660 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222368136/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3222368136/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222368136/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch