Smart Pharmaceutical Monitoring System With Personalized Medication Schedules and Self-Management Programs for Patients With Diabetes: Development and Evaluation Study

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Medical Internet Research vol. 27 (2025), p. e56737
Autor principal: Xiao, Jian
Otros Autores: Li, Mengyao, Cai, Ruwen, Huang, Hangxing, Yu, Huimin, Huang, Ling, Li, Jingyang, Yu, Ting, Zhang, Jiani, Cheng, Shuqiao
Publicado:
Gunther Eysenbach MD MPH, Associate Professor
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3222368304
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/56737  |2 doi 
035 |a 3222368304 
045 2 |b d20250101  |b d20251231 
100 1 |a Xiao, Jian 
245 1 |a Smart Pharmaceutical Monitoring System With Personalized Medication Schedules and Self-Management Programs for Patients With Diabetes: Development and Evaluation Study 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:With the climbing incidence of type 2 diabetes, the health care system is under pressure to manage patients with this condition properly. Particularly, pharmacological therapy constitutes the most fundamental means of controlling blood glucose levels and preventing the progression of complications. However, its effectiveness is often hindered by factors such as treatment complexity, polypharmacy, and poor patient adherence. As new technologies, artificial intelligence and digital technologies are covering all aspects of the medical and health care field, but their application and evaluation in the domain of diabetes research remain limited.Objective:This study aims to develop and establish a stand-alone diabetes management service system designed to enhance self-management support for patients, as well as to assess its performance with experienced health care professionals.Methods:Diabetes Universal Medication Schedule (DUMS) system is grounded in official medicine instructions and evidence-based data to establish medication constraints and drug-drug interaction profiles. Individualized medication schedules and self-management programs were generated based on patient-specific conditions and needs, using an app framework to build patient-side contact pathways. The system’s ability to provide medication guidance and health management was assessed by senior health care professionals using a 5-point Likert scale across 3 groups: outputs generated by the system (DUMS group), outputs refined by pharmacists (intervention group), and outputs generated by ChatGPT-4 (GPT-4 group).Results:We constructed a cloud-based drug information management system loaded with 475 diabetes treatment–related medications; 684 medication constraints; and 12,351 drug-drug interactions and theoretical supports. The generated personalized medication plan and self-management program included recommended dosing times, disease education, dietary considerations, and lifestyle recommendations to help patients with diabetes achieve correct medication use and active disease management. Reliability analysis demonstrated that the DUMS group outperformed the GPT-4 group in medication schedule accuracy and safety, as well as comprehensiveness and richness of the self-management program (P<.001). The intervention group outperformed the DUMS and GPT-4 groups on all indicator scores.Conclusions:DUMS’s treatment monitoring service can provide reliable self-management support for patients with diabetes. ChatGPT-4, powered by artificial intelligence, can act as a collaborative assistant to health care professionals in clinical contexts, although its performance still requires further training and optimization. 
651 4 |a United States--US 
653 |a Language 
653 |a Intervention 
653 |a Diabetes 
653 |a Accuracy 
653 |a Drug interactions 
653 |a Medical personnel 
653 |a Selfmanagement 
653 |a Chronic illnesses 
653 |a Type 2 diabetes mellitus 
653 |a Disease management 
653 |a Glucose 
653 |a Prescription drugs 
653 |a Professional ethics 
653 |a Generative artificial intelligence 
653 |a Chatbots 
653 |a Schedules 
653 |a Artificial intelligence 
653 |a Evidence-based medicine 
653 |a Patients 
653 |a Health care 
653 |a Medicine 
653 |a Professional training 
653 |a Pharmaceuticals 
653 |a Climbing 
653 |a Optimization 
653 |a Reliability 
653 |a Professionals 
653 |a Large language models 
653 |a Pharmacists 
653 |a Information management 
653 |a Education 
653 |a Adults 
653 |a Customization 
653 |a Interfaces 
653 |a Dosage 
653 |a Self evaluation 
653 |a Human-computer interaction 
653 |a Treatment outcomes 
653 |a Drugs 
653 |a Treatment compliance 
653 |a Health services 
653 |a Academic achievement 
653 |a Disease 
653 |a Medical treatment 
653 |a Constraints 
653 |a Groups 
700 1 |a Li, Mengyao 
700 1 |a Cai, Ruwen 
700 1 |a Huang, Hangxing 
700 1 |a Yu, Huimin 
700 1 |a Huang, Ling 
700 1 |a Li, Jingyang 
700 1 |a Yu, Ting 
700 1 |a Zhang, Jiani 
700 1 |a Cheng, Shuqiao 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e56737 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222368304/abstract/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3222368304/fulltextwithgraphics/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222368304/fulltextPDF/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch