Using Synthetic Health Care Data to Leverage Large Language Models for Named Entity Recognition: Development and Validation Study
Guardat en:
| Publicat a: | Journal of Medical Internet Research vol. 27 (2025), p. e66279 |
|---|---|
| Autor principal: | |
| Altres autors: | , , , , , |
| Publicat: |
Gunther Eysenbach MD MPH, Associate Professor
|
| Matèries: | |
| Accés en línia: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| Etiquetes: |
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
| Resum: | Background:Named entity recognition (NER) plays a vital role in extracting critical medical entities from health care records, facilitating applications such as clinical decision support and data mining. Developing robust NER models for low-resource languages, such as Estonian, remains a challenge due to the scarcity of annotated data and domain-specific pretrained models. Large language models (LLMs) have proven to be promising in understanding text from any language or domain.Objective:This study addresses the development of medical NER models for low-resource languages, specifically Estonian. We propose a novel approach by generating synthetic health care data and using LLMs to annotate them. These synthetic data are then used to train a high-performing NER model, which is applied to real-world medical texts, preserving patient data privacy.Methods:Our approach to overcoming the shortage of annotated Estonian health care texts involves a three-step pipeline: (1) synthetic health care data are generated using a locally trained GPT-2 model on Estonian medical records, (2) the synthetic data are annotated with LLMs, specifically GPT-3.5-Turbo and GPT-4, and (3) the annotated synthetic data are then used to fine-tune an NER model, which is later tested on real-world medical data. This paper compares the performance of different prompts; assesses the impact of GPT-3.5-Turbo, GPT-4, and a local LLM; and explores the relationship between the amount of annotated synthetic data and model performance.Results:The proposed methodology demonstrates significant potential in extracting named entities from real-world medical texts. Our top-performing setup achieved an F1-score of 0.69 for drug extraction and 0.38 for procedure extraction. These results indicate a strong performance in recognizing certain entity types while highlighting the complexity of extracting procedures.Conclusions:This paper demonstrates a successful approach to leveraging LLMs for training NER models using synthetic data, effectively preserving patient privacy. By avoiding reliance on human-annotated data, our method shows promise in developing models for low-resource languages, such as Estonian. Future work will focus on refining the synthetic data generation and expanding the method’s applicability to other domains and languages. |
|---|---|
| ISSN: | 1438-8871 |
| DOI: | 10.2196/66279 |
| Font: | Library Science Database |