Clinical Decision Support Using Speech Signal Analysis: Systematic Scoping Review of Neurological Disorders

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Journal of Medical Internet Research vol. 27 (2025), p. e63004
المؤلف الرئيسي: Upeka De Silva
مؤلفون آخرون: Samaneh Madanian, Olsen, Sharon, Templeton, John Michael, Poellabauer, Christian, Schneider, Sandra L, Narayanan, Ajit, Rubaiat, Rahmina
منشور في:
Gunther Eysenbach MD MPH, Associate Professor
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3222368331
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/63004  |2 doi 
035 |a 3222368331 
045 2 |b d20250101  |b d20251231 
100 1 |a Upeka De Silva 
245 1 |a Clinical Decision Support Using Speech Signal Analysis: Systematic Scoping Review of Neurological Disorders 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:Digital biomarkers are increasingly used in clinical decision support for various health conditions. Speech features as digital biomarkers can offer insights into underlying physiological processes due to the complexity of speech production. This process involves respiration, phonation, articulation, and resonance, all of which rely on specific motor systems for the preparation and execution of speech. Deficits in any of these systems can cause changes in speech signal patterns. Increasing efforts are being made to develop speech-based clinical decision support systems.Objective:This systematic scoping review investigated the technological revolution and recent digital clinical speech signal analysis trends to understand the key concepts and research processes from clinical and technical perspectives.Methods:A systematic scoping review was undertaken in 6 databases guided by a set of research questions. Articles that focused on speech signal analysis for clinical decision-making were identified, and the included studies were analyzed quantitatively. A narrower scope of studies investigating neurological diseases were analyzed using qualitative content analysis.Results:A total of 389 articles met the initial eligibility criteria, of which 72 (18.5%) that focused on neurological diseases were included in the qualitative analysis. In the included studies, Parkinson disease, Alzheimer disease, and cognitive disorders were the most frequently investigated conditions. The literature explored the potential of speech feature analysis in diagnosis, differentiating between, assessing the severity and monitoring the treatment of neurological conditions. The common speech tasks used were sustained phonations, diadochokinetic tasks, reading tasks, activity-based tasks, picture descriptions, and prompted speech tasks. From these tasks, conventional speech features (such as fundamental frequency, jitter, and shimmer), advanced digital signal processing–based speech features (such as wavelet transformation–based features), and spectrograms in the form of audio images were analyzed. Traditional machine learning and deep learning approaches were used to build predictive models, whereas statistical analysis assessed variable relationships and reliability of speech features. Model evaluations primarily focused on analytical validations. A significant research gap was identified: the need for a structured research process to guide studies toward potential technological intervention in clinical settings. To address this, a research framework was proposed that adapts a design science research methodology to guide research studies systematically.Conclusions:The findings highlight how data science techniques can enhance speech signal analysis to support clinical decision-making. By combining knowledge from clinical practice, speech science, and data science within a structured research framework, future research may achieve greater clinical relevance. 
653 |a Language 
653 |a Physiological processes 
653 |a Databases 
653 |a Alzheimer's disease 
653 |a Citation management software 
653 |a Neurological disorders 
653 |a Medical diagnosis 
653 |a Disease 
653 |a Content analysis 
653 |a Clinical research 
653 |a Data science 
653 |a Articulation 
653 |a Jitter 
653 |a Prediction models 
653 |a Qualitative research 
653 |a Machine learning 
653 |a Statistical analysis 
653 |a Cognitive impairment 
653 |a Transformation 
653 |a Respiration 
653 |a Artificial intelligence 
653 |a Clinical medicine 
653 |a Clinical decision making 
653 |a Multimedia 
653 |a Biological markers 
653 |a Research methodology 
653 |a Fundamental frequency 
653 |a Biomarkers 
653 |a Data collection 
653 |a Reliability 
653 |a Acoustics 
653 |a Speech 
653 |a Speech production 
653 |a Parkinson's disease 
653 |a Decision support systems 
653 |a Diagnostic tests 
653 |a Deep learning 
653 |a Scientific technological revolution 
653 |a Quantitative analysis 
653 |a Models 
653 |a Research design 
653 |a Disorders 
653 |a Anatomical systems 
653 |a Support networks 
653 |a Phonation 
653 |a Brain diseases 
653 |a Shimmer 
653 |a Signal processing 
653 |a Decision making 
653 |a Medical decision making 
653 |a Respiratory system 
700 1 |a Samaneh Madanian 
700 1 |a Olsen, Sharon 
700 1 |a Templeton, John Michael 
700 1 |a Poellabauer, Christian 
700 1 |a Schneider, Sandra L 
700 1 |a Narayanan, Ajit 
700 1 |a Rubaiat, Rahmina 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e63004 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222368331/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3222368331/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222368331/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch