Analysis of Factors Influencing the Willingness of Chinese Older Adults to Use mHealth Devices: Nationwide Cross-Sectional Survey Study

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Medical Internet Research vol. 27 (2025), p. e66804
Autor principal: Yan, Mengyao
Otros Autores: Sun, Wendi, Tan, Cheng, Wu, Yibo, Liu, Yuanli
Publicado:
Gunther Eysenbach MD MPH, Associate Professor
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3222368489
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/66804  |2 doi 
035 |a 3222368489 
045 2 |b d20250101  |b d20251231 
100 1 |a Yan, Mengyao 
245 1 |a Analysis of Factors Influencing the Willingness of Chinese Older Adults to Use mHealth Devices: Nationwide Cross-Sectional Survey Study 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:In addition to standard older adult care services, mobile medical devices have proved to be an effective tool for controlling the health of older adults. However, little is known about the variables driving the acceptance of these gadgets and the willingness of older adults in China to use them.Objective:This study aims to explore the factors that affect the use of mobile health (mHealth) devices by older adults in China, focusing on individual, social, and family influences.Methods:The Psychology and Behavior Investigation of Chinese Residents survey database provided the data for this study. The survey was conducted in 148 Chinese cities between June 20 and August 31, 2022. The parameters linked to older persons’ desire to use mobile medical devices were determined by this study using a combination model of multiple stepwise linear regression and a classification and regression tree decision tree.Results:In total, 4085 older adults took part in the poll. On a scale of 0 to 100, the average score for willingness to adopt mHealth devices was 63.70 (SD 25.11). The results of the multiple stepwise linear regression showed that having a postgraduate degree and higher (β=.040; P=.007), being unemployed (β=.037; P=.02), having a high social status (β=.085; P<.001), possessing high health literacy (β=.089; P<.001), demonstrating high self-efficacy (β=.043; P=.02), not living with children (β=.0340; P=.02), having a household per capita monthly income of >Y4000 (US $550) (β=.048; P=.002), experiencing high perceived social support (β=.096; P<.001), reporting a high quality of life (β=.149; P<.001), having higher levels of family communication (β=–.071; P<.001), having an identity bubble (β=.085; P<.001), not having chronic diseases (β=.049; P=.001), and experiencing mild depression (β=–.035; P=.02) were associated with older adults’ willingness to use mHealth devices. The classification and regression tree decision tree model’s findings demonstrated that the primary determinants of older adults’ desire to use mHealth devices are quality of life, identity bubble, social status, health literacy, family health, and perceived social support.Conclusions:This study uses the Andersen Healthcare Utilization Model to investigate the effects of demand variables, enabling resources, and predisposing traits on older persons’ propensity to use mHealth devices. These results offer reference data for the marketing and use of mHealth devices for older individuals in the future. The ultimate goal of this strategy is to create a balanced and harmonious integration of technology and humanistic care. 
651 4 |a China 
653 |a Behavior 
653 |a Databases 
653 |a Unemployed people 
653 |a Social status 
653 |a Telemedicine 
653 |a Regression analysis 
653 |a Questionnaires 
653 |a Health status 
653 |a Older people 
653 |a Adult care services 
653 |a Global health 
653 |a Variables 
653 |a Medical supplies 
653 |a Classification 
653 |a Hypotheses 
653 |a Blood pressure 
653 |a Aging 
653 |a Public health 
653 |a Marketing 
653 |a Polls & surveys 
653 |a Caregivers 
653 |a Desire 
653 |a Families & family life 
653 |a Population 
653 |a Health literacy 
653 |a Health services 
653 |a Chronic illnesses 
653 |a Integrated care 
653 |a Quality of life 
653 |a Decision making 
653 |a Identity 
653 |a Social support 
653 |a Hypertension 
653 |a Wearable computers 
653 |a Medical equipment 
653 |a Willingness 
653 |a Perceived social support 
653 |a Family psychology 
653 |a Physicians 
653 |a Health services utilization 
653 |a Adults 
653 |a Self-efficacy 
653 |a Psychology 
653 |a Literacy 
653 |a Mental health services 
653 |a Social classes 
700 1 |a Sun, Wendi 
700 1 |a Tan, Cheng 
700 1 |a Wu, Yibo 
700 1 |a Liu, Yuanli 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e66804 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222368489/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3222368489/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222368489/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch