Development of a Predictive Model for Metabolic Syndrome Using Noninvasive Data and its Cardiovascular Disease Risk Assessments: Multicohort Validation Study

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Medical Internet Research vol. 27 (2025), p. e67525
Hlavní autor: Jin-Hyun, Park
Další autoři: Jeong, Inyong, Gang-Jee Ko, Jeong, Seogsong, Lee, Hwamin
Vydáno:
Gunther Eysenbach MD MPH, Associate Professor
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3222368560
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/67525  |2 doi 
035 |a 3222368560 
045 2 |b d20250101  |b d20251231 
100 1 |a Jin-Hyun, Park 
245 1 |a Development of a Predictive Model for Metabolic Syndrome Using Noninvasive Data and its Cardiovascular Disease Risk Assessments: Multicohort Validation Study 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:Metabolic syndrome is a cluster of metabolic abnormalities, including obesity, hypertension, dyslipidemia, and insulin resistance, that significantly increase the risk of cardiovascular disease (CVD) and other chronic conditions. Its global prevalence is rising, particularly in aging and urban populations. Traditional screening methods rely on laboratory tests and specialized assessments, which may not be readily accessible in routine primary care and community settings. Limited resources, time constraints, and inconsistent screening practices hinder early identification and intervention. Developing a noninvasive and scalable predictive model could enhance accessibility and improve early detection.Objective:This study aimed to develop and validate a predictive model for metabolic syndrome using noninvasive body composition data. Additionally, we evaluated the model’s ability to predict long-term CVD risk, supporting its application in clinical and public health settings for early intervention and preventive strategies.Methods:We developed a machine learning–based predictive model using noninvasive data from two nationally representative cohorts: the Korea National Health and Nutrition Examination Survey (KNHANES) and the Korean Genome and Epidemiology Study. The model was trained using dual-energy x-ray absorptiometry data from KNHANES (2008-2011) and validated internally with bioelectrical impedance analysis data from KNHANES 2022. External validation was conducted using Korean Genome and Epidemiology Study follow-up datasets. Five machine learning algorithms were compared, and the best-performing model was selected based on the area under the receiver operating characteristic curve. Cox proportional hazards regression was used to assess the model’s ability to predict long-term CVD risk.Results:The model demonstrated strong predictive performance across validation cohorts. Area under the receiver operating characteristic curve values for metabolic syndrome prediction ranged from 0.8338 to 0.8447 in internal validation, 0.8066 to 0.8138 in external validation 1, and 0.8039 to 0.8123 in external validation 2. The model’s predictions were significantly associated with future cardiovascular risk, with Cox regression analysis indicating that individuals classified as having metabolic syndrome had a 1.51-fold higher risk of developing CVD (hazard ratio 1.51, 95% CI 1.32-1.73; P<.001). The ability to predict long-term CVD risk highlights the potential utility of this model for guiding early interventions.Conclusions:This study developed a noninvasive predictive model for metabolic syndrome with strong performance across diverse validation cohorts. By enabling early risk identification without laboratory tests, the model enhances accessibility in primary care and large-scale screenings. Its ability to predict long-term CVD risk supports proactive intervention strategies, potentially reducing the burden of cardiometabolic diseases. Further research should refine the model with additional clinical factors and broader population validation to maximize its clinical impact. 
610 4 |a National Cholesterol Education Program 
653 |a Population 
653 |a Laboratories 
653 |a Long term 
653 |a Public health 
653 |a Epidemiology 
653 |a Genomics 
653 |a Risk factors 
653 |a Cholesterol 
653 |a Nutrition 
653 |a Chronic illnesses 
653 |a Risk assessment 
653 |a Review boards 
653 |a Bioelectrical impedance 
653 |a Measurement techniques 
653 |a Genomes 
653 |a Health facilities 
653 |a Abdomen 
653 |a Primary care 
653 |a Access 
653 |a Machine learning 
653 |a Hypertension 
653 |a Body composition 
653 |a Prevention 
653 |a Ability 
653 |a Insulin 
653 |a Validation studies 
653 |a Medical history 
653 |a Metabolic disorders 
653 |a Obesity 
653 |a Cardiovascular disease 
653 |a Medical screening 
653 |a Cardiovascular diseases 
653 |a Health education 
653 |a Missing data 
653 |a Metabolic syndrome 
653 |a Surveillance 
653 |a Early intervention 
653 |a Disease control 
653 |a Clinical assessment 
653 |a Metabolic diseases 
653 |a Resistance 
653 |a Disease 
653 |a Intervention 
653 |a Data 
653 |a Predictions 
653 |a Validity 
653 |a Evaluation 
653 |a Identification 
653 |a Aging 
653 |a Urban population 
700 1 |a Jeong, Inyong 
700 1 |a Gang-Jee Ko 
700 1 |a Jeong, Seogsong 
700 1 |a Lee, Hwamin 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e67525 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222368560/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3222368560/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222368560/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch