The Added Value of Digital Body Chart Pain Surface Assessment as an Objective Biomarker: Multicohort Study

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Medical Internet Research vol. 27 (2025), p. e62786
Autor principal: Billot, Maxime
Altres autors: Ounajim, Amine, Moens, Maarten, Goudman, Lisa, Jean-Philippe Deneuville, Roulaud, Manuel, Nivole, Kévin, Many, Mathilde, Baron, Sandrine, Lorgeoux, Bertille, Bouche, Bénédicte, Lampert, Lucie, Romain, David, Rigoard, Philippe
Publicat:
Gunther Eysenbach MD MPH, Associate Professor
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3222368588
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/62786  |2 doi 
035 |a 3222368588 
045 2 |b d20250101  |b d20251231 
100 1 |a Billot, Maxime 
245 1 |a The Added Value of Digital Body Chart Pain Surface Assessment as an Objective Biomarker: Multicohort Study 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:Although it has been well-documented that pain intensity alone is not sufficient to assess chronic pain, the objective pain surface encapsulated in a digital tool might present a major interest in the objective assessment of pain.Objective:This study aims to determine the potential added value of pain surface measurement by determining the correlation between pain surface and pain intensity in chronic pain patients.Methods:Two databases from observational prospective and retrospective longitudinal studies including patients with chronic pain were used in this research. Pain intensity was assessed by the Numeric Pain Rating Scale. Pain surface (cm²) and pain typology (neuropathic vs mechanical components) were measured by a specific pain mapping digital tool (PRISMap, Poitiers University Hospital). Patients were asked to draw their pain surface on a computerized tactile interface in a predetermined body (adapted from the patient’s BMI). A color code was used to represent pain intensity (very intense, intense, moderate, and low). Simple linear regression was used to assess the proportion of variance in pain surface explained by pain intensity.Results:The final analysis included 637 patients with chronic pain. The percentage of variance of the pain surface explained by pain intensity was 1.24% (R²=0.0124; 95% CI 0.11%-6.3%). In addition, 424 (66.6%) patients used more than 1 intensity or color, among whom 218 (34.2%) used 2 intensities or colors, 155 (24.3%) used 3 intensities or colors, and 51 (8%) used 4 intensities or colors.Conclusions:This study showed that pain intensity and pain surface provide complementary and distinct information that would help to improve pain assessment. Two-thirds of the cohort used 2 or more intensities to describe their pain. Combining pain intensity and pain surface should be strongly considered as a means of improving daily practice assessment of patients with chronic pain in primary and secondary care.Trial Registration:ClinicalTrials.gov NCT02964130; https://clinicaltrials.gov/study/NCT02964130?term=PREDIBACK&rank=2 
651 4 |a United States--US 
653 |a Patients 
653 |a Measurement 
653 |a Quality of life 
653 |a Databases 
653 |a Color 
653 |a Biological markers 
653 |a Chronic pain 
653 |a Evaluation 
653 |a Questionnaires 
653 |a Body mass index 
653 |a Nervous system 
653 |a Missing data 
653 |a Biomarkers 
653 |a Data collection 
653 |a Mapping 
653 |a Ethics 
653 |a Computerization 
653 |a Back surgery 
653 |a Longitudinal studies 
653 |a Measures 
653 |a Objectives 
653 |a Body weight 
653 |a Registration 
653 |a Pain 
700 1 |a Ounajim, Amine 
700 1 |a Moens, Maarten 
700 1 |a Goudman, Lisa 
700 1 |a Jean-Philippe Deneuville 
700 1 |a Roulaud, Manuel 
700 1 |a Nivole, Kévin 
700 1 |a Many, Mathilde 
700 1 |a Baron, Sandrine 
700 1 |a Lorgeoux, Bertille 
700 1 |a Bouche, Bénédicte 
700 1 |a Lampert, Lucie 
700 1 |a Romain, David 
700 1 |a Rigoard, Philippe 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e62786 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222368588/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3222368588/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222368588/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch