Virtual Patient Simulations Using Social Robotics Combined With Large Language Models for Clinical Reasoning Training in Medical Education: Mixed Methods Study

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Journal of Medical Internet Research vol. 27 (2025), p. e63312
Egile nagusia: Borg, Alexander
Beste egile batzuk: Georg, Carina, Jobs, Benjamin, Huss, Viking, Waldenlind, Kristin, Ruiz, Mini, Edelbring, Samuel, Skantze, Gabriel, Parodis, Ioannis
Argitaratua:
Gunther Eysenbach MD MPH, Associate Professor
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3222368694
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/63312  |2 doi 
035 |a 3222368694 
045 2 |b d20250101  |b d20251231 
100 1 |a Borg, Alexander 
245 1 |a Virtual Patient Simulations Using Social Robotics Combined With Large Language Models for Clinical Reasoning Training in Medical Education: Mixed Methods Study 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:Virtual patients (VPs) are computer-based simulations of clinical scenarios used in health professions education to address various learning outcomes, including clinical reasoning (CR). CR is a crucial skill for health care practitioners, and its inadequacy can compromise patient safety. Recent advancements in large language models (LLMs) and social robots have introduced new possibilities for enhancing VP interactivity and realism. However, their application in VP simulations has been limited, and no studies have investigated the effectiveness of combining LLMs with social robots for CR training.Objective:The aim of the study is to explore the potential added value of a social robotic VP platform combined with an LLM compared to a conventional computer-based VP modality for CR training of medical students.Methods:A Swedish explorative proof-of-concept study was conducted between May and July 2023, combining quantitative and qualitative methodology. In total, 15 medical students from Karolinska Institutet and an international exchange program completed a VP case in a social robotic platform and a computer-based semilinear platform. Students’ self-perceived VP experience focusing on CR training was assessed using a previously developed index, and paired 2-tailed t test was used to compare mean scores (scales from 1 to 5) between the platforms. Moreover, in-depth interviews were conducted with 8 medical students.Results:The social robotic platform was perceived as more authentic (mean 4.5, SD 0.7 vs mean 3.9, SD 0.5; odds ratio [OR] 2.9, 95% CI 0.0-1.0; P=.04) and provided a beneficial overall learning effect (mean 4.4, SD 0.6 versus mean 4.1, SD 0.6; OR 3.7, 95% CI 0.1-0.5; P=.01) compared with the computer-based platform. Qualitative analysis revealed 4 themes, wherein students experienced the social robot as superior to the computer-based platform in training CR, communication, and emotional skills. Limitations related to technical and user-related aspects were identified, and suggestions for improvements included enhanced facial expressions and VP cases simulating multiple personalities.Conclusions:A social robotic platform enhanced by an LLM may provide an authentic and engaging learning experience for medical students in the context of VP simulations for training CR. Beyond its limitations, several aspects of potential improvement were identified for the social robotic platform, lending promise for this technology as a means toward the attainment of learning outcomes within medical education curricula. 
653 |a Medical education 
653 |a Foreign students 
653 |a Rheumatic diseases 
653 |a Clinical training 
653 |a Exchange programs 
653 |a Interactive computer systems 
653 |a Questionnaires 
653 |a Internal medicine 
653 |a Robots 
653 |a Simulated clients 
653 |a Medical students 
653 |a Authenticity 
653 |a Internet 
653 |a Medical technology 
653 |a Facial expressions 
653 |a Emotional intelligence 
653 |a Robotics 
653 |a Rheumatology 
653 |a Patients 
653 |a Qualitative research 
653 |a Simulation 
653 |a Clinical outcomes 
653 |a Health care 
653 |a Learning 
653 |a Educational objectives 
653 |a Clinical decision making 
653 |a Multimedia 
653 |a Medical personnel 
653 |a Curricula 
653 |a Large language models 
653 |a Social education 
653 |a Professions 
653 |a Models 
653 |a Self concept 
653 |a Medical schools 
653 |a Predicate 
653 |a Computers 
653 |a Computer mediated communication 
653 |a Health education 
653 |a Students 
653 |a Training 
653 |a Professional education 
653 |a Health services 
653 |a Reasoning 
653 |a Attainment 
653 |a Learning outcomes 
653 |a Scores 
653 |a Language modeling 
700 1 |a Georg, Carina 
700 1 |a Jobs, Benjamin 
700 1 |a Huss, Viking 
700 1 |a Waldenlind, Kristin 
700 1 |a Ruiz, Mini 
700 1 |a Edelbring, Samuel 
700 1 |a Skantze, Gabriel 
700 1 |a Parodis, Ioannis 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e63312 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222368694/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3222368694/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222368694/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch