Patients’ Perceptions of Artificial Intelligence Acceptance, Challenges, and Use in Medical Care: Qualitative Study

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Medical Internet Research vol. 27 (2025), p. e70487
Autor principal: Gundlack, Jana
Altres autors: Thiel, Carolin, Negash, Sarah, Buch, Charlotte, Apfelbacher, Timo, Denny, Kathleen, Christoph, Jan, Mikolajczyk, Rafael, Unverzagt, Susanne, Frese, Thomas
Publicat:
Gunther Eysenbach MD MPH, Associate Professor
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3222369187
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/70487  |2 doi 
035 |a 3222369187 
045 2 |b d20250101  |b d20251231 
100 1 |a Gundlack, Jana 
245 1 |a Patients’ Perceptions of Artificial Intelligence Acceptance, Challenges, and Use in Medical Care: Qualitative Study 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:Artificial intelligence (AI) is increasingly used in medical care, particularly in the areas of image recognition and processing. While its practical use in other areas is still limited, an understanding of patients’ needs is essential for the practical and sustainable implementation of AI, which could further acceptance of new innovations.Objective:The objective of this study was to explore patients’ perceptions toward acceptance, challenges of implementation, and potential applications of AI in medical care.Methods:The study used a qualitative research design. To capture a broad range of patient perspectives, we conducted semistructured focus groups (FGs). As a stimulus for the FGs and as an introduction to the topic, we presented a video defining AI and showing 3 potential AI applications in health care. Participants were recruited from different locations in the regions of Halle (Saale) and Erlangen, Germany; all but one group were from outpatient settings. We analyzed the data using a content analysis approach.Results:A total of 35 patients (13 female and 22 male; age: range 23-92, median 50 years) participated in 6 focus groups. They highlighted that AI acceptance in medical care could be improved through user-friendly applications, clear instructions, feedback mechanisms, and a patient-centered approach. Perceived key barriers included data protection concerns, lack of human oversight, and profit-driven motives. Perceived challenges and requirements for AI implementation involved compatibility, training of end users, environmental sustainability, and adherence to quality standards. Potential AI application areas identified were diagnostics, image and data processing, and administrative tasks, though participants stressed that AI should remain a support tool, not an autonomous system. Psychology was an area where its use was opposed due to the need for human interaction.Conclusions:Patients were generally open to the use of AI in medical care as a support tool rather than as an independent decision-making system. Acceptance and successful use of AI in medical care could be achieved if it is easy to use, adapted to individual characteristics of the users, and accessible to everyone, with the primary aim of enhancing patient well-being. AI in health care requires a regulatory framework, quality standards, and monitoring to ensure socially fair and environmentally sustainable development. However, the successful implementation of AI in medical practice depends on overcoming the mentioned challenges and addressing user needs. 
610 4 |a Food & Drug Administration--FDA 
651 4 |a Germany 
653 |a Patient-centered care 
653 |a Application 
653 |a Content analysis 
653 |a End users 
653 |a Psychology 
653 |a Health services 
653 |a Artificial intelligence 
653 |a Qualitative research 
653 |a Quality standards 
653 |a Challenges 
653 |a Sustainability 
653 |a Clinical decision making 
653 |a Sustainable development 
653 |a Focus groups 
653 |a Innovations 
653 |a Stimulus 
653 |a Perceptions 
653 |a Implementation 
653 |a Medical equipment 
653 |a Data processing 
653 |a Data integrity 
653 |a Acceptance 
653 |a Quality of care 
653 |a Data quality 
653 |a Well being 
653 |a Patients 
653 |a Research design 
653 |a Standards 
653 |a Feedback 
653 |a Mental health services 
653 |a Decision making 
653 |a Medical decision making 
653 |a Video recordings 
653 |a Health care 
700 1 |a Thiel, Carolin 
700 1 |a Negash, Sarah 
700 1 |a Buch, Charlotte 
700 1 |a Apfelbacher, Timo 
700 1 |a Denny, Kathleen 
700 1 |a Christoph, Jan 
700 1 |a Mikolajczyk, Rafael 
700 1 |a Unverzagt, Susanne 
700 1 |a Frese, Thomas 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e70487 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222369187/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3222369187/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222369187/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch