Adoption of Large Language Model AI Tools in Everyday Tasks: Multisite Cross-Sectional Qualitative Study of Chinese Hospital Administrators

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Medical Internet Research vol. 27 (2025), p. e70789
Autor principal: Chen, Jun
Otros Autores: Liu, Yu, Liu, Peng, Zhao, Yiming, Zuo, Yan, Duan, Hui
Publicado:
Gunther Eysenbach MD MPH, Associate Professor
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3222369419
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/70789  |2 doi 
035 |a 3222369419 
045 2 |b d20250101  |b d20251231 
100 1 |a Chen, Jun 
245 1 |a Adoption of Large Language Model AI Tools in Everyday Tasks: Multisite Cross-Sectional Qualitative Study of Chinese Hospital Administrators 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:Large language model (LLM) artificial intelligence (AI) tools have the potential to streamline health care administration by enhancing efficiency in document drafting, resource allocation, and communication tasks. Despite this potential, the adoption of such tools among hospital administrators remains understudied, particularly at the individual level.Objective:This study aims to explore factors influencing the adoption and use of LLM AI tools among hospital administrators in China, focusing on enablers, barriers, and practical applications in daily administrative tasks.Methods:A multicenter, cross-sectional, descriptive qualitative design was used. Data were collected through semistructured face-to-face interviews with 31 hospital administrators across 3 tertiary hospitals in Beijing, Shenzhen, and Chengdu from June 2024 to August 2024. The Colaizzi method was used for thematic analysis to identify patterns in participants’ experiences and perspectives.Results:Adoption of LLM AI tools was generally low, with significant site-specific variations. Participants with higher technological familiarity and positive early experiences reported more frequent use, while barriers such as mistrust in tool accuracy, limited prompting skills, and insufficient training hindered broader adoption. Tools were primarily used for document drafting, with limited exploration of advanced functionalities. Participants strongly emphasized the need for structured training programs and institutional support to enhance usability and confidence.Conclusions:Familiarity with technology, positive early experiences, and openness to innovation may facilitate adoption, while barriers such as limited knowledge, mistrust in tool accuracy, and insufficient prompting skills can hinder broader use. LLM AI tools are now primarily used for basic tasks such as document drafting, with limited application to more advanced functionalities due to a lack of training and confidence. Structured tutorials and institutional support are needed to enhance usability and integration. Targeted training programs, combined with organizational strategies to build trust and improve accessibility, could enhance adoption rates and broaden tool use. Future quantitative investigations should validate the adoption rate and influencing factors. 
651 4 |a China 
653 |a Barriers 
653 |a Openness 
653 |a Work experience 
653 |a Data analysis 
653 |a Familiarity 
653 |a Interviews 
653 |a Access 
653 |a Consent 
653 |a Artificial intelligence 
653 |a Hospitals 
653 |a Health care 
653 |a Resource allocation 
653 |a Inclusion 
653 |a Institutional aspects 
653 |a Innovations 
653 |a Decision making 
653 |a Tutorials 
653 |a Meetings 
653 |a Data collection 
653 |a Administrators 
653 |a Qualitative research 
653 |a Large language models 
653 |a Accuracy 
653 |a Trust 
653 |a Training 
653 |a Skills 
653 |a Health services 
653 |a Adoption of innovations 
653 |a Educational programs 
653 |a Language modeling 
700 1 |a Liu, Yu 
700 1 |a Liu, Peng 
700 1 |a Zhao, Yiming 
700 1 |a Zuo, Yan 
700 1 |a Duan, Hui 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e70789 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222369419/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3222369419/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222369419/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch