Patient Voices in Dialysis Care: Sentiment Analysis and Topic Modeling Study of Social Media Discourse

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Medical Internet Research vol. 27 (2025), p. e70128
Hlavní autor: Shankar, Ravi
Další autoři: Xu, Qian, Bundele, Anjali
Vydáno:
Gunther Eysenbach MD MPH, Associate Professor
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3222369421
003 UK-CbPIL
022 |a 1438-8871 
024 7 |a 10.2196/70128  |2 doi 
035 |a 3222369421 
045 2 |b d20250101  |b d20251231 
100 1 |a Shankar, Ravi 
245 1 |a Patient Voices in Dialysis Care: Sentiment Analysis and Topic Modeling Study of Social Media Discourse 
260 |b Gunther Eysenbach MD MPH, Associate Professor  |c 2025 
513 |a Journal Article 
520 3 |a Background:Patients with end-stage kidney disease undergoing dialysis face significant physical, psychological, and social challenges that impact their quality of life. Social media platforms such as X (formerly known as Twitter) have become important outlets for these patients to share experiences and exchange information.Objective:This study aimed to uncover key themes, emotions, and challenges expressed by the dialysis community on X from April 2006 to August 2024 by leveraging natural language processing techniques, specifically sentiment analysis and topic modeling.Methods:We collected 12,976 publicly available X posts related to dialysis using the platform’s application programming interface version 2 and Python’s Tweepy library. After rigorous preprocessing, 58.13% (7543/12,976) of the posts were retained for analysis. Sentiment analysis using the Valence Aware Dictionary and Sentiment Reasoner (VADER) model, which is a rule-based sentiment analyzer specifically attuned to social media content, classified the emotional tone of posts. VADER uses a human-curated lexicon that maps lexical features to sentiment scores, considering punctuation, capitalization, and modifiers. For topic modeling, posts with <50 tokens were removed, leaving 53.81% (4059/7543) of the posts, which were analyzed using latent Dirichlet allocation with coherence score optimization to identify the optimal number of topics (k=8). The analysis pipeline was implemented using Python’s Natural Language Toolkit, Gensim, and scikit-learn libraries, with hyperparameter tuning to maximize model performance.Results:Sentiment analysis revealed 49.2% (3711/7543) positive, 26.2% (1976/7543) negative, and 24.7% (1863/7543) neutral sentiment posts. Latent Dirichlet allocation topic modeling identified 8 key thematic clusters: medical procedures and outcomes (722/4059, 17.8% prevalence), daily life impact (666/4059, 16.4%), risks and complications (621/4059, 15.3%), patient education and support (544/4059, 13.4%), health care access and costs (499/4059, 12.3%), symptoms and side effects (442/4059, 10.9%), patient experiences and socioeconomic challenges (406/4059, 10%), and diet and fluid management (162/4059, 4%). Cross-analysis of topics and sentiment revealed that negative sentiment was highest for daily life impact (580/666, 87.1%) and socioeconomic challenges (145/406, 35.8%), whereas the education and support topic exhibited more positive sentiment (250/544, 46%). Topic coherence scores ranged from 0.38 to 0.52, with the medical procedures topic showing the highest semantic coherence. Intertopic distance mapping via multidimensional scaling revealed conceptual relationships between identified themes, with lifestyle impact and socioeconomic challenges clustering closely. Our longitudinal analysis demonstrated evolving discourse patterns, with technology-related discussions increasing by 24% in recent years, whereas financial concerns remained consistently prominent.Conclusions:This study provides a comprehensive, data-driven understanding of the complex lived experiences of patients undergoing dialysis shared on social media. The findings underscore the need for more holistic, patient-centered care models and policies that address the multidimensional challenges illuminated by patients’ voices. 
653 |a Hemodialysis 
653 |a Patient education 
653 |a Discourse 
653 |a Analysis 
653 |a Patient-centered care 
653 |a Datasets 
653 |a Patients 
653 |a Health care expenditures 
653 |a Data mining 
653 |a Kidney diseases 
653 |a Medical personnel 
653 |a Social networks 
653 |a Chronic illnesses 
653 |a User generated content 
653 |a Health care access 
653 |a Side effects 
653 |a Emotions 
653 |a Virtual communities 
653 |a Mapping 
653 |a Automation 
653 |a Global health 
653 |a Coherence 
653 |a COVID-19 
653 |a Dialysis 
653 |a Quality of life 
653 |a Clinical outcomes 
653 |a Challenges 
653 |a Artificial intelligence 
653 |a Sentiment analysis 
653 |a Diet 
653 |a Social media 
653 |a Pandemics 
653 |a Activities of daily living 
653 |a Health education 
653 |a Optimization 
653 |a Natural language processing 
653 |a Topics 
653 |a Clustering 
653 |a Caregivers 
653 |a Libraries 
653 |a Peritoneal dialysis 
653 |a Semantics 
653 |a Multidimensional scaling 
653 |a Measures 
653 |a Punctuation 
653 |a Mass media effects 
653 |a Everyday life 
653 |a Models 
653 |a Discourse analysis 
653 |a Programming languages 
653 |a Valence 
653 |a Mass media images 
653 |a Health services 
653 |a Mental health services 
653 |a Rules 
653 |a Education 
653 |a Allocation 
653 |a Sociolinguistics 
653 |a Drug effects 
700 1 |a Xu, Qian 
700 1 |a Bundele, Anjali 
773 0 |t Journal of Medical Internet Research  |g vol. 27 (2025), p. e70128 
786 0 |d ProQuest  |t Library Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222369421/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3222369421/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222369421/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch