FPGA Based Accelerator Design for Stochastic Online Scheduling

Salvato in:
Dettagli Bibliografici
Pubblicato in:ProQuest Dissertations and Theses (2025)
Autore principale: Palaniappan, Vairavan
Pubblicazione:
ProQuest Dissertations & Theses
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3222494975
003 UK-CbPIL
020 |a 9798280766808 
035 |a 3222494975 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Palaniappan, Vairavan 
245 1 |a FPGA Based Accelerator Design for Stochastic Online Scheduling 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Efficient job scheduling is a critical challenge in modern computing environments, particularly in cloud computing, high-performance computing (HPC), and real-time systems. Traditional software-based schedulers struggle to efficiently balance workload distribution due to high scheduling overhead, lack of adaptability to dynamic workloads, and suboptimal resource utilization. This research presents a novel FPGA-based accelerator for stochastic online scheduling (SOS), leveraging hardware parallelism to optimize real-time job allocation and reduce scheduling latency. By introducing a hardware-accelerated approach to real-time scheduling, this research establishes a new paradigm for adaptive scheduling mechanisms in computing systems. The FPGA-based SOS accelerator provides a scalable, energy-efficient, and high-performance alternative to software-based scheduling, making it particularly well suited for cloud data centers, AI workloads, and latency-sensitive applications. Future extensions include AI-driven scheduling optimization, multi-FPGA distributed scheduling architectures, and integration with carbon-aware computing frameworks to further enhance efficiency and sustainability. 
653 |a Computer engineering 
653 |a Engineering 
653 |a Computer science 
653 |a Electrical engineering 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222494975/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222494975/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch