FPGA Based Accelerator Design for Stochastic Online Scheduling
Salvato in:
| Pubblicato in: | ProQuest Dissertations and Theses (2025) |
|---|---|
| Autore principale: | |
| Pubblicazione: |
ProQuest Dissertations & Theses
|
| Soggetti: | |
| Accesso online: | Citation/Abstract Full Text - PDF |
| Tags: |
Nessun Tag, puoi essere il primo ad aggiungerne!!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3222494975 | ||
| 003 | UK-CbPIL | ||
| 020 | |a 9798280766808 | ||
| 035 | |a 3222494975 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 66569 |2 nlm | ||
| 100 | 1 | |a Palaniappan, Vairavan | |
| 245 | 1 | |a FPGA Based Accelerator Design for Stochastic Online Scheduling | |
| 260 | |b ProQuest Dissertations & Theses |c 2025 | ||
| 513 | |a Dissertation/Thesis | ||
| 520 | 3 | |a Efficient job scheduling is a critical challenge in modern computing environments, particularly in cloud computing, high-performance computing (HPC), and real-time systems. Traditional software-based schedulers struggle to efficiently balance workload distribution due to high scheduling overhead, lack of adaptability to dynamic workloads, and suboptimal resource utilization. This research presents a novel FPGA-based accelerator for stochastic online scheduling (SOS), leveraging hardware parallelism to optimize real-time job allocation and reduce scheduling latency. By introducing a hardware-accelerated approach to real-time scheduling, this research establishes a new paradigm for adaptive scheduling mechanisms in computing systems. The FPGA-based SOS accelerator provides a scalable, energy-efficient, and high-performance alternative to software-based scheduling, making it particularly well suited for cloud data centers, AI workloads, and latency-sensitive applications. Future extensions include AI-driven scheduling optimization, multi-FPGA distributed scheduling architectures, and integration with carbon-aware computing frameworks to further enhance efficiency and sustainability. | |
| 653 | |a Computer engineering | ||
| 653 | |a Engineering | ||
| 653 | |a Computer science | ||
| 653 | |a Electrical engineering | ||
| 773 | 0 | |t ProQuest Dissertations and Theses |g (2025) | |
| 786 | 0 | |d ProQuest |t ProQuest Dissertations & Theses Global | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3222494975/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3222494975/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch |