Graph Neural Network Output for Dataset Duplication Detection on Analog Integrated Circuit Recognition System

Сохранить в:
Библиографические подробности
Опубликовано в::International Journal of Advanced Computer Science and Applications vol. 16, no. 5 (2025)
Главный автор: PDF
Опубликовано:
Science and Information (SAI) Organization Limited
Предметы:
Online-ссылка:Citation/Abstract
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3222641073
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160586  |2 doi 
035 |a 3222641073 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Graph Neural Network Output for Dataset Duplication Detection on Analog Integrated Circuit Recognition System 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a In the need for artificial intelligence application on the analog circuit design automation, larger and larger datasets containing analog and digital circuit pieces are required to support the analog circuit recognition systems. Since analog circuits with almost similar designs could produce completely different outputs, in case of poor netlist to graph abstraction, larger netlist input circuits could generate larger graph dataset duplications, leading to poor performance of the circuit recognition. In this study, a technique to detect graph dataset duplication on big data applications is introduced by utilizing the output vector representation (OVR) of the untrained Graph Neural Network (GNN). By calculating the multi-dimensional OVR output data into 2-dimentional (2D) representation, even the random weighted untrained GNN outputs are observed to be capable of distinguishing between each graph data inputs, generating different output for different graph input while providing identical output for the same duplicated graph data, and allowing the dataset’s duplication detection. The 2D representation is also capable of visualizing the overall datasets, giving a simple overview of the relation of the data within the same and different classes. From the simulation result, despite being affected by the floating-point calculation accuracy and consistency deficiency, the F1 score using floating-point identical comparisons are observed with an average of 96.92% and 93.70% when using CPU and GPU calculations, respectively, while the floating-point rounding calculation is applied. The duplication detection using floating point range comparison is the future work, combined with the study of the 2D GNN output behavior under the ongoing training process. 
653 |a Digital electronics 
653 |a Datasets 
653 |a Circuit design 
653 |a Big Data 
653 |a Integrated circuits 
653 |a Artificial intelligence 
653 |a Recognition 
653 |a Graph neural networks 
653 |a Floating point arithmetic 
653 |a Analog circuits 
653 |a Representations 
653 |a Simulation 
653 |a Accuracy 
653 |a Computer science 
653 |a Graphs 
653 |a Neural networks 
653 |a Computer engineering 
653 |a Automation 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 5 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222641073/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222641073/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch