PSOMCD: Particle Swarm Optimization Algorithm Enhanced with Modified Crowding Distance for Load Balancing in Cloud Computing

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Advanced Computer Science and Applications vol. 16, no. 5 (2025)
Autor principal: PDF
Publicado:
Science and Information (SAI) Organization Limited
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3222641154
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160565  |2 doi 
035 |a 3222641154 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a PSOMCD: Particle Swarm Optimization Algorithm Enhanced with Modified Crowding Distance for Load Balancing in Cloud Computing 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Effective load balancing in cloud computing architectures is crucial towards enhancing resource utilization, response times, and stability in the system. The present study proposes a new strategy with a Particle Swarm Optimization algorithm enhanced with Modified Crowding Distance (PSOMCD) to tackle task scheduling among Virtual Machines (VMs) in dynamic scenarios. The traditional PSO algorithm is supplemented by an enhanced crowding distance mechanism by PSOMCD to improve diversity in decision spaces and convergence to optimal solutions. The multi-objective fitness function addresses principal challenges in cloud computing, including load distribution, energy consumption, and throughput optimization. The performance of the algorithm is demonstrated in simulations, comparing its performance with other optimization techniques available in the literature. Results prove that PSOMCD provides better task allocation, improved load balancing, and decreased energy usage, thus effectively managing resources in dynamic and heterogeneous cloud ecosystems. 
653 |a Particle swarm optimization 
653 |a Algorithms 
653 |a Task scheduling 
653 |a Electrical loads 
653 |a Resource utilization 
653 |a Energy consumption 
653 |a Crowding 
653 |a Cloud computing 
653 |a Load distribution (forces) 
653 |a Load balancing 
653 |a Virtual environments 
653 |a Energy distribution 
653 |a Load 
653 |a Scheduling 
653 |a Computer centers 
653 |a Computer science 
653 |a Optimization techniques 
653 |a Neural networks 
653 |a Heuristic 
653 |a Workloads 
653 |a Optimization algorithms 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 5 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222641154/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222641154/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch