Design and Evaluation of a Forensic-Ready Framework for Smart Classrooms

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Advanced Computer Science and Applications vol. 16, no. 5 (2025)
Autor principal: PDF
Publicado:
Science and Information (SAI) Organization Limited
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3222641157
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160532  |2 doi 
035 |a 3222641157 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Design and Evaluation of a Forensic-Ready Framework for Smart Classrooms 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a The rise of cyber threats in educational environments underscores the need for forensic-ready systems tailored to digital learning platforms like smart classrooms. This study proposes a proactive forensic-ready framework that integrates threat estimation, risk profiling, data identification, and collection management into a continuous readiness cycle. Blockchain technology ensures log immutability, while LMS APIs enable systematic evidence capture with minimal disruption to learning processes. Monte Carlo Simulation validates the framework’s performance across key metrics. Results show a log capture success rate of 77.27%, with high accuracy for structured attacks such as SQL Injection. The system maintains operational efficiency, adding only 15% average CPU overhead. Forensic logs are securely stored in JSON format on a blockchain ledger, ensuring both integrity and accessibility. However, reduced effectiveness for complex attacks like Remote Code Execution and occasional retrieval delays under heavy loads highlight areas for improvement. Future enhancements will focus on expanding threat coverage and optimizing log retrieval. By addressing vulnerabilities unique to smart classrooms, such as unauthorized access and data manipulation, this study introduces a scalable, domain-specific solution for enhancing forensic readiness and cybersecurity in educational ecosystems. 
610 4 |a National Institute of Standards & Technology 
653 |a Learning 
653 |a Classrooms 
653 |a Education 
653 |a Monte Carlo simulation 
653 |a Cybersecurity 
653 |a Forensic computing 
653 |a Blockchain 
653 |a Retrieval 
653 |a Technological change 
653 |a Threats 
653 |a Computer science 
653 |a Architecture 
653 |a Educational technology 
653 |a Learning management systems 
653 |a Automation 
653 |a Access control 
653 |a Internet of Things 
653 |a Innovations 
653 |a Machine learning 
653 |a Data integrity 
653 |a Forensic sciences 
653 |a Artificial intelligence 
653 |a Edge computing 
653 |a Computer engineering 
653 |a Design 
653 |a Computer forensics 
653 |a Structured Query Language-SQL 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 5 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222641157/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222641157/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch