AI-DRIVEN REAL-TIME TRAFFIC AND EMERGENCY MANAGEMENT USING YOLO

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Advanced Research in Computer Science vol. 16, no. 3 (May-Jun 2025), p. 60
1. Verfasser: Harris, Preethi
Weitere Verfasser: Adhnan, Jeff M, S, Abhinavu, G S, Aakash, M
Veröffentlicht:
International Journal of Advanced Research in Computer Science
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3222814784
003 UK-CbPIL
022 |a 0976-5697 
024 7 |a 10.26483/ijarcs.v16i3.7247  |2 doi 
035 |a 3222814784 
045 2 |b d20250501  |b d20250630 
084 |a 198728  |2 nlm 
100 1 |a Harris, Preethi 
245 1 |a AI-DRIVEN REAL-TIME TRAFFIC AND EMERGENCY MANAGEMENT USING YOLO 
260 |b International Journal of Advanced Research in Computer Science  |c May-Jun 2025 
513 |a Journal Article 
520 3 |a With rapid urbanization and increasing vehicle ownership, traditional traffic management systems that rely on fixed schedules and basic sensors are no longer sufficient to handle growing congestion. These outdated systems often result in longer travel times, frequent bottlenecks, and delayed emergency responses. To address these issues, AI-driven solutions powered by deep learning (DL) provide an intelligent alternative by dynamically adjusting traffic signals based on real-time conditions. This project presents an AI- powered traffic monitoring and management system that utilizes YOLO for real-time vehicle detection and accident monitoring, deployed through a lightweight and interactive Streamlit interface. The system analyzes live traffic feeds, counts vehicles, detects accidents, and adjusts signal timings to improve flow and reduce delays. In emergencies, it identifies active ambulances or fire trucks and prioritizes their movement, while triggering automatic alerts through APIs like Twilio for rapid response. A web- based Streamlit dashboard enables centralized monitoring and visualization for traffic authorities, while the mobile application delivers live traffic updates and safety alerts to the public. By integrating deep learning with intuitive user interfaces, the system enhances urban traffic efficiency, boosts public safety, and lays the groundwork for smarter city infrastructure. 
653 |a Deep learning 
653 |a Traffic safety 
653 |a Applications programs 
653 |a Traffic signals 
653 |a Traffic management 
653 |a Travel time 
653 |a Mobile computing 
653 |a Emergency management 
653 |a Emergency response 
653 |a Public safety 
653 |a User interfaces 
653 |a Object recognition 
653 |a Monitoring 
653 |a Real time 
653 |a Management systems 
653 |a Project management 
700 1 |a Adhnan, Jeff M, S 
700 1 |a Abhinavu, G S 
700 1 |a Aakash, M 
773 0 |t International Journal of Advanced Research in Computer Science  |g vol. 16, no. 3 (May-Jun 2025), p. 60 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3222814784/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3222814784/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch