AN INTELLIGENT APPROACH FOR CROP WATER FOOTPRINT PREDICTION

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:International Journal of Advanced Research in Computer Science vol. 16, no. 3 (May-Jun 2025), p. 121
المؤلف الرئيسي: Varshika Saravanan
مؤلفون آخرون: Harris, Preethi, Elangovan, Priyaharshini
منشور في:
International Journal of Advanced Research in Computer Science
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
مستخلص:Agriculture is the largest consumer of water; enhancement of the water level irrigation is essential for sustainability. This project employs the Random Forest Regressor for crop specifications as per hectare with considering the features such as crop type, seasonal data, location and meteorological data. To improve the robustness of the model performance, data preprocessing, Feature Engineering and Exploratory Data Analysis are used. The trained model is incorporated with a Flask Based web application, enabling the user, farmer, researchers and policymakers to custom their inputs and obtain their regional and crop specific predictions of water footprint. An in- built water calculator helps in manual estimations of predicting the water level required by specific crops along with yield area in cubic meters. By the combination of Machine Learning with user interface, it helps in the prediction of water footprint by considering the different features and improving the water conservation.
تدمد:0976-5697
DOI:10.26483/ijarcs.v16i3.7250
المصدر:Advanced Technologies & Aerospace Database