Advanced composite wing design for next-generation military UAVs: A progressive numerical optimization framework

Guardado en:
Detalles Bibliográficos
Publicado en:Defence Technology vol. 48 (2025), p. 141
Autor principal: Yilmaz, M Atif
Otros Autores: Hasirci, Kemal, Gündüz, Berk, Irez, Alaeddin Burak
Publicado:
KeAi Publishing Communications Ltd
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3223346688
003 UK-CbPIL
022 |a 2096-3459 
022 |a 2214-9147 
022 |a 1673-002X 
024 7 |a 10.1016/j.dt.2025.02.020  |2 doi 
035 |a 3223346688 
045 2 |b d20250101  |b d20251231 
100 1 |a Yilmaz, M Atif  |u Department of Defence Technologies, Graduate School, Istanbul Technical University (ITU), Istanbul 34437, Turkey 
245 1 |a Advanced composite wing design for next-generation military UAVs: A progressive numerical optimization framework 
260 |b KeAi Publishing Communications Ltd  |c 2025 
513 |a Journal Article 
520 3 |a The design of unmanned aerial vehicles (UAVs) revolves around the careful selection of materials that are both lightweight and robust. Carbon fiber-reinforced polymer (CFRP) emerged as an ideal option for wing construction, with its mechanical qualities thoroughly investigated. In this study, we developed and optimized a conceptual UAV wing to withstand structural loads by establishing progressive composite stacking sequences, and we conducted a series of experimental characterizations on the resulting material. In the optimization phase, the objective was defined as weight reduction, while the Hashin damage criterion was established as the constraint for the optimization process. The optimization algorithm adaptively monitors regional damage criterion values, implementing necessary adjustments to facilitate the mitigation process in a cost-effective manner. Optimization of the analytical model using Simulia Abaqus™ and a Python-based user-defined sub-routine resulted in a 34.7% reduction in the wing's structural weight after 45 iterative rounds. Then, the custom-developed optimization algorithm was compared with a genetic algorithm optimization. This comparison has demonstrated that, although the genetic algorithm explores numerous possibilities through hybridization, the custom-developed algorithm is more result-oriented and achieves optimization in a reduced number of steps. To validate the structural analysis, test specimens were fabricated from the wing's most critically loaded segment, utilizing the identical stacking sequence employed in the optimization studies. Rigorous mechanical testing revealed unexpectedly high compressive strength, while tensile and bending strengths fell within expected ranges. All observed failure loads remained within the established safety margins, thereby confirming the reliability of the analytical predictions. 
653 |a Investigations 
653 |a Optimization techniques 
653 |a Carbon fiber reinforced plastics 
653 |a Safety margins 
653 |a Aviation 
653 |a Unmanned aerial vehicles 
653 |a Epoxy resins 
653 |a Damage 
653 |a Structural analysis 
653 |a Wing design 
653 |a Aerospace engineering 
653 |a Stacking sequence (composite materials) 
653 |a Efficiency 
653 |a Composite materials 
653 |a Aircraft 
653 |a Fiber reinforced polymers 
653 |a Design optimization 
653 |a Structural weight 
653 |a Composite wings 
653 |a Genetic algorithms 
653 |a Aerodynamics 
653 |a Criteria 
653 |a Mechanical tests 
653 |a Weight reduction 
653 |a Optimization algorithms 
653 |a Compressive strength 
653 |a Carbon fiber reinforcement 
700 1 |a Hasirci, Kemal  |u Department of Mechanical Engineering, Faculty of Mechanical Engineering, Istanbul Technical University (ITU), Istanbul 34437, Turkey 
700 1 |a Gündüz, Berk  |u Department of Defence Technologies, Graduate School, Istanbul Technical University (ITU), Istanbul 34437, Turkey 
700 1 |a Irez, Alaeddin Burak  |u Department of Mechanical Engineering, Faculty of Mechanical Engineering, Istanbul Technical University (ITU), Istanbul 34437, Turkey 
773 0 |t Defence Technology  |g vol. 48 (2025), p. 141 
786 0 |d ProQuest  |t Military Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223346688/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3223346688/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223346688/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch