Multi-objective trajectory planning for connected and autonomous vehicles in mixed traffic flow

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Engineering and Applied Science vol. 72, no. 1 (Dec 2025), p. 91
Autor principal: Li, Hui
Otros Autores: Ge, Yunfei, Guo, Yahui, Guan, Yu, Zhang, Xu
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3223512877
003 UK-CbPIL
022 |a 1110-1903 
022 |a 1110-1393 
024 7 |a 10.1186/s44147-025-00642-8  |2 doi 
035 |a 3223512877 
045 2 |b d20251201  |b d20251231 
100 1 |a Li, Hui  |u Henan University of Technology, School of Civil Engineering, Zhengzhou, China (GRID:grid.412099.7) (ISNI:0000 0001 0703 7066) 
245 1 |a Multi-objective trajectory planning for connected and autonomous vehicles in mixed traffic flow 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a As urban traffic complexity continues to rise, challenges related to traffic efficiency, fuel consumption, and safety are becoming increasingly critical. These issues underline the need for multi-objective trajectory optimization models, particularly in environments where both automated and human-driven vehicles coexist. Therefore, this paper developed a multi-objective trajectory planning model utilizing the TD3 algorithm. Here, we design the state space, action space, and reward function, where the state space encompasses variables such as speed, relative speed, distance to the stop line, relative position, phase state, and remaining phase duration, and the action space outputs optimal acceleration and deceleration. The reward function integrates multiple objectives, including safety, fuel consumption, and traffic efficiency. The model is verified using the SUMO tool, examining different levels of CAV penetration and varying traffic flows. The results demonstrate that as CAV penetration increases, vehicle trajectories become increasingly smooth, leading to reductions in average travel time, fuel consumption, and queue length. Specifically, at 100% CAV penetration with a traffic flow of 600 pcu/h, the highest optimization rate for average travel time reaches 15.38%. For average fuel consumption, the peak optimization rate of 19.53% occurs at a traffic flow of 800 pcu/h. Furthermore, under conditions of 300 pcu/h and 400 pcu/h traffic flow, 100% CAV penetration eliminates queues entirely. Beyond 400 pcu/h, minimal queues form with 100% CAV penetration. These results indicate that autonomous driving technology can effectively enhance the efficiency and sustainability of transportation systems, providing robust support for urban traffic management strategies. In particular, under high-density and mixed traffic conditions, the trajectory optimization model significantly improves traffic flow, reduces congestion, decreases energy consumption, and lowers the incidence of traffic accidents, thereby offering a theoretical foundation for the implementation of intelligent transportation systems. 
651 4 |a China 
653 |a Traffic accidents 
653 |a Traffic safety 
653 |a Emissions 
653 |a Optimization 
653 |a Efficiency 
653 |a Travel time 
653 |a Traffic flow 
653 |a Multiple objective analysis 
653 |a Automation 
653 |a Fuel consumption 
653 |a Intelligent transportation systems 
653 |a Energy consumption 
653 |a Optimization models 
653 |a Trajectory optimization 
653 |a Autonomous vehicles 
653 |a Traffic management 
653 |a Traffic control 
653 |a Design 
653 |a Linear programming 
653 |a Methods 
653 |a Traffic congestion 
653 |a Algorithms 
653 |a Trajectory planning 
653 |a Queuing theory 
653 |a Driving conditions 
700 1 |a Ge, Yunfei  |u Henan University of Technology, School of Civil Engineering, Zhengzhou, China (GRID:grid.412099.7) (ISNI:0000 0001 0703 7066) 
700 1 |a Guo, Yahui  |u Henan University of Technology, School of Civil Engineering, Zhengzhou, China (GRID:grid.412099.7) (ISNI:0000 0001 0703 7066); CSCEC Xinjiang Construction & Engineering Group CO.Ltd, Urumqi, China (GRID:grid.412099.7) 
700 1 |a Guan, Yu  |u Wuhan University of Technology, School of Transportation and Logistics Engineering, Wuhan, China (GRID:grid.162110.5) (ISNI:0000 0000 9291 3229) 
700 1 |a Zhang, Xu  |u Henan University of Technology, School of Civil Engineering, Zhengzhou, China (GRID:grid.412099.7) (ISNI:0000 0001 0703 7066) 
773 0 |t Journal of Engineering and Applied Science  |g vol. 72, no. 1 (Dec 2025), p. 91 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223512877/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3223512877/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223512877/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch