Road Accident Prediction Using Machine Learning Algorithms

Guardado en:
Bibliografiske detaljer
Udgivet i:ProQuest Dissertations and Theses (2025)
Hovedforfatter: Shaik, Saira Bhanu
Udgivet:
ProQuest Dissertations & Theses
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3223514074
003 UK-CbPIL
020 |a 9798283485331 
035 |a 3223514074 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Shaik, Saira Bhanu 
245 1 |a Road Accident Prediction Using Machine Learning Algorithms 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a This research develops a road accident prediction system as an integrated solution to improve road safety through the prediction of the severity of accidents, considering environmental conditions, driver behavior, and road conditions. This work combines state-of-the-art models like Gradient Boosting Classifier and Light Gradient Boosting Machine (GBM) Classifier to create a new stacking classifier that combines the strengths of multiple models for improved prediction accuracy. These models are evaluated against a variety of metrics, such as accuracy, precision, recall, and F1-score, among others. From this, it is observable that the stacking model is highly effective in predicting accident severity, thus providing useful information to the traffic authorities and policymakers on what to target to improve safety on the roads. In this respect, research attests to the promise of machine learning in accident prediction and calls for increased use of advanced algorithms in making intelligent data-driven interventions in road traffic accidents and fatalities. 
653 |a Computer science 
653 |a Geographic information science 
653 |a Artificial intelligence 
653 |a Transportation 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223514074/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223514074/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch