Study on Trajectory Planning for Polishing Free-Form Surfaces of XY-3-RPS Hybrid Robot

Na minha lista:
Detalhes bibliográficos
Publicado no:Actuators vol. 14, no. 6 (2025), p. 269
Autor principal: Song Xiaozong
Outros Autores: An Junfeng, Ma Xingwu
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3223857020
003 UK-CbPIL
022 |a 2076-0825 
024 7 |a 10.3390/act14060269  |2 doi 
035 |a 3223857020 
045 2 |b d20250101  |b d20251231 
084 |a 231328  |2 nlm 
100 1 |a Song Xiaozong 
245 1 |a Study on Trajectory Planning for Polishing Free-Form Surfaces of XY-3-RPS Hybrid Robot 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Free-form surface polishing is a key process in precision machining within high-end manufacturing, where optimizing the polishing trajectory directly influences both processing quality and efficiency. Traditional trajectory planning methods for free-form surface polishing in high-curvature regions suffer from issues such as a lack of precision, low trajectory continuity, and inefficiency. This paper proposes an improved trajectory planning method based on curvature characteristics, incorporating dynamic partitioning and boundary smoothing algorithms. These methods dynamically adjust according to surface curvature, enhancing processing efficiency and surface quality. Additionally, a hybrid optimization framework combining a genetic algorithm (GA) and local search (LS) is proposed to address the challenges of balancing global optimization with local fine-tuning in traditional trajectory planning methods. These challenges often result in large errors, low machining efficiency, and unstable surface quality. The method optimizes the overall trajectory distribution through a global search using GA while locally refining the high-curvature regions with LS. This combination improves trajectory uniformity and smoothness, and the results demonstrate significant increases in machining efficiency and accuracy. Finally, the feasibility of the trajectory planning method was verified through motion simulation. This paper also provides a detailed description of the mathematical modeling, algorithm implementation, and simulation analysis of the XY-3-RPS hybrid robot for trajectory optimization, offering both a theoretical foundation and engineering support for its application in free-form surface polishing. 
653 |a Precision machining 
653 |a Kinematics 
653 |a Accuracy 
653 |a Surface properties 
653 |a Smoothness 
653 |a Genetic algorithms 
653 |a Trajectory optimization 
653 |a Surface geometry 
653 |a Mutation 
653 |a Global optimization 
653 |a Optimization 
653 |a Efficiency 
653 |a Motion simulation 
653 |a Polishing 
653 |a Robots 
653 |a Methods 
653 |a Automation 
653 |a Curvature 
653 |a Free form 
653 |a Trajectory planning 
700 1 |a An Junfeng 
700 1 |a Ma Xingwu 
773 0 |t Actuators  |g vol. 14, no. 6 (2025), p. 269 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223857020/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223857020/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223857020/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch