Multidisciplinary Design Optimization of the NASA Metallic and Composite Common Research Model Wingbox: Addressing Static Strength, Stiffness, Aeroelastic, and Manufacturing Constraints

Guardado en:
Detalles Bibliográficos
Publicado en:Aerospace vol. 12, no. 6 (2025), p. 476
Autor principal: Dababneh Odeh
Otros Autores: Kipouros Timoleon, Whidborne, James F
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3223857028
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12060476  |2 doi 
035 |a 3223857028 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Dababneh Odeh  |u Department of Aerospace and Aircraft Engineering, Kingston University London, Roehampton Vale, Friars Avenue, London SW15 3DW, UK 
245 1 |a Multidisciplinary Design Optimization of the NASA Metallic and Composite Common Research Model Wingbox: Addressing Static Strength, Stiffness, Aeroelastic, and Manufacturing Constraints 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study explores the multidisciplinary design optimization (MDO) of the NASA Common Research Model (CRM) wingbox, utilizing both metallic and composite materials while addressing various constraints, including static strength, stiffness, aeroelasticity, and manufacturing considerations. The primary load-bearing wing structure is designed with high structural fidelity, resulting in a higher number of structural elements representing the wingbox model. This increased complexity expands the design space due to a greater number of design variables, thereby enhancing the potential for identifying optimal design alternatives and improving mass estimation accuracy. Finite element analysis (FEA) combined with gradient-based design optimization techniques was employed to assess the mass of the metallic and composite wingbox configurations. The results demonstrate that the incorporation of composite materials into the CRM wingbox design achieves a structural mass reduction of approximately 17.4% compared to the metallic wingbox when flutter constraints are considered and a 23.4% reduction when flutter constraints are excluded. When considering flutter constraints, the composite wingbox exhibits a 5.6% reduction in structural mass and a 5.3% decrease in critical flutter speed. Despite the reduction in flutter speed, the design remains free from flutter instabilities within the operational flight envelope. Flutter analysis, conducted using the p-k method, confirmed that both the optimized metallic and composite wingboxes are free from flutter instabilities, with flutter speeds exceeding the critical threshold of 256 m/s. Additionally, free vibration and aeroelastic stability analyses reveal that the composite wingbox demonstrates higher natural frequencies compared to the metallic version, indicating that composite materials enhance dynamic response and reduce susceptibility to aeroelastic phenomena. Fuel mass was also found to significantly influence both natural frequencies and flutter characteristics, with the presence of fuel leading to a reduction in structural frequencies associated with wing bending. 
610 4 |a National Aeronautics & Space Administration--NASA 
653 |a Load 
653 |a Finite element method 
653 |a Fuels 
653 |a Flutter analysis 
653 |a Dynamic response 
653 |a Fluid dynamics 
653 |a Optimization techniques 
653 |a Stiffness 
653 |a Aeroelastic stability 
653 |a Stability analysis 
653 |a Load bearing elements 
653 |a Free vibration 
653 |a Manufacturing 
653 |a Design 
653 |a Composite materials 
653 |a Estimation accuracy 
653 |a Aircraft 
653 |a Design optimization 
653 |a Multidisciplinary design optimization 
653 |a Wing boxes 
653 |a Aerodynamics 
653 |a Resonant frequencies 
653 |a Variables 
653 |a Mathematical models 
653 |a Algorithms 
653 |a Constraints 
653 |a Structural members 
653 |a Geometry 
653 |a Flight envelopes 
653 |a Aeroelasticity 
700 1 |a Kipouros Timoleon  |u Engineering Design Centre, Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK; tk291@eng.cam.ac.uk 
700 1 |a Whidborne, James F  |u School of Aerospace, Transport and Manufacturing, Cranfield University, Bedford MK43 0AL, UK; j.f.whidborne@cranfield.ac.uk 
773 0 |t Aerospace  |g vol. 12, no. 6 (2025), p. 476 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223857028/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223857028/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223857028/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch