Two-Stage Uncertain UAV Combat Mission Assignment Problem Based on Uncertainty Theory

Uloženo v:
Podrobná bibliografie
Vydáno v:Aerospace vol. 12, no. 6 (2025), p. 553
Hlavní autor: Zhong Haitao
Další autoři: Yang Rennong, Zheng Aoyu, Zheng Mingfa, Yu, Mei
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3223857991
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12060553  |2 doi 
035 |a 3223857991 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Zhong Haitao  |u Air Traffic Control and Navigation School, Air Force Engineering University, Xi’an 710051, China; zht1351686515@126.com (H.Z.); yangrn6907@163.com (R.Y.); 
245 1 |a Two-Stage Uncertain UAV Combat Mission Assignment Problem Based on Uncertainty Theory 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Based on uncertainty theory, this paper studies the problem of unmanned aerial vehicle (UAV) combat mission assignment under an uncertain environment. First, considering both the target value, which is the combat mission benefit gained from attacking the target, and the unit fuel consumption of UAV as uncertain variables, an uncertain UAV combat mission assignment model is established. And according to decisions under the realization of uncertain variables, the first stage generates an initial mission allocation scheme corresponding to the realization of target value, while the second stage dynamically adjusts the scheme according to the realization of unit fuel consumption; a two-stage uncertain UAV combat mission assignment (TUCMA) model is obtained. Then, because of the difficulty of obtaining analytical solutions due to uncertainty and the complexity of solving the second stage, the TUCMA model is transformed into an expected value-effective deterministic model of the two-stage uncertain UAV combat mission assignment (ETUCMA). A modified particle swarm optimization (PSO) algorithm is designed to solve the ETUCMA model to get the expected value-effective solution of the TUCMA model. Finally, experimental simulations of multiple UAV combat task allocation scenarios demonstrate that the proposed modified PSO algorithm yields an optimal decision with maximum combat mission benefits under a maximum iteration limit, which are significantly greater benefits than those for the mission assignment achieved by the original PSO algorithm. The proposed modified PSO exhibits superior performance compared with the ant colony optimization algorithm, enabling the acquisition of an optimal allocation scheme with greater benefits. This verifies the effectiveness and superiority of the proposed model and algorithm in maximizing combat mission benefits. 
653 |a Aircraft 
653 |a Particle swarm optimization 
653 |a Random variables 
653 |a Mathematical models 
653 |a Unmanned aerial vehicles 
653 |a Assignment problem 
653 |a Optimization 
653 |a Effectiveness 
653 |a Exact solutions 
653 |a Algorithms 
653 |a Linear programming 
653 |a Ant colony optimization 
653 |a Fuel consumption 
653 |a Uncertainty 
653 |a Energy consumption 
653 |a Probability distribution 
653 |a Expected values 
700 1 |a Yang Rennong  |u Air Traffic Control and Navigation School, Air Force Engineering University, Xi’an 710051, China; zht1351686515@126.com (H.Z.); yangrn6907@163.com (R.Y.); 
700 1 |a Zheng Aoyu  |u Air Traffic Control and Navigation School, Air Force Engineering University, Xi’an 710051, China; zht1351686515@126.com (H.Z.); yangrn6907@163.com (R.Y.); 
700 1 |a Zheng Mingfa  |u Fundamentals Department, Air Force Engineering University, Xi’an 710051, China; meiyu414@stu.xjtu.edu.cn 
700 1 |a Yu, Mei  |u Fundamentals Department, Air Force Engineering University, Xi’an 710051, China; meiyu414@stu.xjtu.edu.cn 
773 0 |t Aerospace  |g vol. 12, no. 6 (2025), p. 553 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223857991/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223857991/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223857991/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch