Predicting Landing Position Deviation in Low-Visibility and Windy Environment Using Pilots’ Eye Movement Features

Guardado en:
书目详细资料
发表在:Aerospace vol. 12, no. 6 (2025), p. 523
主要作者: Li, Xiuyi
其他作者: Zhou, Yue, Zhao, Weiwei, Fu Chuanyun, Huang Zhuocheng, Li Nianqian, Xu, Haibo
出版:
MDPI AG
主题:
在线阅读:Citation/Abstract
Full Text + Graphics
Full Text - PDF
标签: 添加标签
没有标签, 成为第一个标记此记录!

MARC

LEADER 00000nab a2200000uu 4500
001 3223858015
003 UK-CbPIL
022 |a 2226-4310 
024 7 |a 10.3390/aerospace12060523  |2 doi 
035 |a 3223858015 
045 2 |b d20250101  |b d20251231 
084 |a 231330  |2 nlm 
100 1 |a Li, Xiuyi  |u CAAC Academy, Civil Aviation Flight University of China, Guanghan 618307, China 
245 1 |a Predicting Landing Position Deviation in Low-Visibility and Windy Environment Using Pilots’ Eye Movement Features 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Eye movement features of pilots are critical for aircraft landing, especially in low-visibility and windy conditions. This study conducts simulated flight experiments concerning aircraft approach and landing under three low-visibility and windy conditions, including no-wind, crosswind, and tailwind. This research collects 30 participants’ eye movement data after descending from the instrument approach to the visual approach and measures the landing position deviation. Then, a random forest method is used to rank eye movement features and sequentially construct feature sets by feature importance. Two machine learning models (SVR and RF) and four deep learning models (GRU, LSTM, CNN-GRU, and CNN-LSTM) are trained with these feature sets to predict the landing position deviation. The results show that the cumulative fixation duration on the heading indicator, altimeter, air-speed indicator, and external scenery is vital for landing position deviation under no-wind conditions. The attention allocation required by approaches under crosswind and tailwind conditions is more complex. According to the MAE metric, CNN-LSTM has the best prediction performance and stability under no-wind conditions, while CNN-GRU is better for crosswind and tailwind cases. RF also performs well as per the RMSE metric, as it is suitable for predicting landing position errors of outliers. 
651 4 |a China 
653 |a Aircraft accidents & safety 
653 |a Software 
653 |a Deep learning 
653 |a Airspeed 
653 |a Aircraft landing 
653 |a Wind 
653 |a Flight simulation 
653 |a Civil aviation 
653 |a Eye movements 
653 |a Instrument approach 
653 |a Machine learning 
653 |a Pilots 
653 |a Position measurement 
653 |a Crosswinds 
653 |a Experiments 
653 |a Altimeters 
653 |a Speed indicators 
653 |a Visibility 
653 |a Deviation 
653 |a Position errors 
700 1 |a Zhou, Yue  |u Flight Technology College, Civil Aviation Flight University of China, Guanghan 618307, China 
700 1 |a Zhao, Weiwei  |u Flight Technology College, Civil Aviation Flight University of China, Guanghan 618307, China 
700 1 |a Fu Chuanyun  |u School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 
700 1 |a Huang Zhuocheng  |u Flight Technology College, Civil Aviation Flight University of China, Guanghan 618307, China 
700 1 |a Li Nianqian  |u Flight Technology College, Civil Aviation Flight University of China, Guanghan 618307, China 
700 1 |a Xu, Haibo  |u Guanghan Brand, Civil Aviation Flight University of China, Guanghan 618307, China 
773 0 |t Aerospace  |g vol. 12, no. 6 (2025), p. 523 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3223858015/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3223858015/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3223858015/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch